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Phenix	News	
Announcements	
New	Phenix	Release	
Phenix	 1.16	 was	 released	 prior	 to	 the	
recent	change	in	submission	policy	by	the	
Protein	 Data	 Bank	 to	 only	 accept	models	
solve	using	X-ray	diffraction	in	the	mmCIF	
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format	 (Adams,	 P.	 D.	 et	 al.,	 2019,	 Acta	
Crystallogr.	Sect.	Struct.	Biol.	75,	451–454).	
Changes	 include	 a	 new	 GUI	 designed	 for	
deposition,	mmtbx.prepare_pdb_deposition,	
to	 create	 the	 mmCIF	 files	 for	 deposition	
into	the	PDB.	
Also,	a	new	tool	(CLI	and	GUI)	for	getting	a	
validation	 report	 from	 the	 PDB,	
phenix.get_pdb_validation_report.	
Other	changes	in	the	addition	of	sequence	
checking	to	Comprehensive	Validation	 for	
Cryo-EM.	
One	 fundamental	 change	 is	 the	 inclusion	
of	 Amber	 functionality,	 by	 default,	 in	 the	
Phenix	installer.	This	was	facilitated	by	the	
move	 to	 using	 conda	 as	 the	 installation	
package	 manager.	 A	 publication	 is	 in	
preparation	while	the	documentation	is	an	
ideal	source	of	information.	
A	 new	 tool,	 phenix.hbond,	 is	 available	 in	
the	 nightly	 and	 discussed	 on	 page	 18	 of	
this	newletter.		
Downloads	available	at	phenix-online.org	
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Expert	advice	
Fitting	Tip	#18	–	A	subversive	kind	of	
misfit	"water"	

Jane	 Richardson	 and	 Christopher	
Williams,	Duke	University	

It	 is	 common	 knowledge	 that	 a	 density	
peak	 fit	 as	 a	 crystallographic	 water	 may	
not	 actually	 be	 a	 water	 molecule.	 In	 a	
previous	Fitting	Tip	(Headd	&	Richardson	
2013)	we	surveyed	examples	of	four	such	
cases	 and	 their	 separable	 diagnoses,	
mostly	by	 the	atom	type	with	which	 they	
clash:	 an	 unidentified	 ion,	 part	 of	 an	
unidentified	 ligand,	 the	 start	 of	 an	

unidentified	 alternate	 conformation,	 or	 a	
noise	 peak.	 Since	 then,	 we	 have	
documented	 several	 other	 clashing-water	
situations.	 Here	 we	 show	 the	 new	 case	
with	the	most	seriously	bad	impact	on	the	
neighboring	 structure:	 a	 water	 fit	 into	 a	
peak	that	is	really	a	sidechain	atom.	
A	 sidechain	 can	 be	 fit	 incorrectly	 for	 the	 initial	
model,	usually	because	of	unclear	electron	density	
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or	 from	 a	 molecular-replacement	 model	 with	 a	
different	rotamer.	That	produces	a	difference	peak	
for	 a	 real	 atom	 that	 is	 left	 outside	 the	 model.	

Figure	 2:	 	 Stereo	of	 a	water	misfit	 into	 the	 density	 for	 the	 Cd1	 atom	 of	 Ile	195	 in	 3js8	 (Sagermann	 2010).	 The	
displaced	 Cd1	 has	 two	 bad	 clashes	 with	 other	 residues.	 The	 water	 (reddish	 ball)	 is	 displaced	 outward	 in	 the	
density	by	its	unfavorable	interaction	with	Cg,	producing	another	small	difference	peak.	

Figure	 1:	 A	 water	 (reddish	 sphere)	 incorrectly	 displacing	 the	
Nh2	 atom	 of	 Arg	 59	 in	 the	 1qLw	 esterase	 structure	 (Bourne	
2000).	 Hotpink	 spikes	 flag	 all-atom	 clashes	 >0.4Å,	 and	 orange	
contours	 represent	 difference	 density	 at	 -3.5σ.	 Gray	 contours	
are	2mFo-DFc	electron	density	at	1.2σ	and	black	ones	at	3σ.	
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Automated	 or	 manual	 water	 picking	 will	 then	
often	 place	 a	 water	 in	 that	 difference	 peak.	
Refinement	cannot	by	itself	recover	from	this	type	
of	 mistake,	 but	 an	 informed	 look	 at	 severely	
clashing	"waters"	can	diagnose	a	correction	
Arginine	
Arginine,	 with	 four	 χ	 angles,	 is	 prone	 to	 an	
approximately	 but	 not	 correctly	 placed	
guanidinium	 group.	 Figure	 1	 shows	 Arg	 59	 in	
1qLw	 at	 1.09Å,	 with	 a	 water	 modeled	 into	 the	
peak	 that	 actually	 represents	 the	 Nh2	 atom.	 Of	
course,	 the	water	 has	 huge	 clashes	with	 Ce,	 Nh1	
and	 Nh2,	 and	 the	 misfit	 guanidinium	 produces	
large	 negative	 difference	 density	 on	 the	modeled	
atoms.	Arg	32	in	1bkr	has	a	similar	problem.	
Isoleucine	
For	isoleucine,	it	is	the	Cd1	atom	that	is	displaced	
by	 a	water,	 and	 it	 usually	moves	 into	 a	 different	
rotamer	 with	 Cd	 entirely	 out	 of	 density	 and	
clashing	with	other	residues.	The	3js8	cholesterol	
oxidase	structure	at	1.54Å	has	four	such	cases	(Ile	
195,	443,	459,	and	463),	each	with	a	clash	overlap	
>1Å	between	the	water	and	the	Hg12	atom.	Figure	
2	shows	the	Ile	195	example,	with	the	large	water	
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clash,	 plus	 difference	 density	 and	 additional	
clashes	for	the	displaced	Cd1.	 
Tryptophan	
This	 problem	 can	 occasionally	 occur	 even	 for	 a	
tryptophan	 fit	 backward	 and	 non-rotameric,	
where	a	water	is	placed	in	the	density	for	the	Cd1	
atom	of	the	sidechain's	5-membered	ring.	Figure	3	
shows	 Trp	 170	 in	 chain	 B	 of	 the	 1qLw	
arabinfuranosidase	 structure,	 with	 the	 rotamer-
outlier	 sidechain	 (in	 gold)	 obviously	 backward,	
with	 only	 its	 6-membered	 ring	 in	 density.	 The	
water	has	huge	clashes	with	4	atoms	of	the	model,	
but	 it	 does	manage	 to	 fill	 some	of	 the	 otherwise-
unoccupied	 density.	 Trp	 170	 is	 fit	 correctly	 in	
chain	A	of	1qw9,	but	we	have	twice	seen	this	same	
startling	 pattern	 of	 a	 backward	 Trp	 in	
undeposited	initial	models.		
This	 same	 structure	 also	 has	 examples	 of	 water	
displacing	 an	 atom	 in	 leucine	 and	 in	methionine.	
Leu	 A	 243	 has	 the	 water	 in	 place	 of	 the	 Cd1	
branch,	 pushing	 the	 sidechain	 aside	 enough	 to	
create	 a	 Cβdeviation	 outlier.	 In	 Met	 A	 377	 the	
water	 occupies	 the	 sulfur	 density	 of	what	 should	
be	 the	 major	 alternate	 conformer.	 Evidently	 the	

Figure	3:	A	water	 (reddish	ball)	 trying	 to	 fill	 the	unoccupied	 electron	density	 created	by	 fitting	a	Trp	 sidechain	
backwards.	The	water	has	very	large	clashes	with	four	atoms	of	the	model,	which	is	a	rotamer	outlier	(flagged	in	
gold),	and	 the	 incorrect	atoms	of	 the	Trp	also	 clash,	with	nearby	sidechains.	Trp	B	170	 in	1qw9	at	1.2Å	(Hoevel	
2003).	
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modeling	 of	 this	 structure	 involved	 early	 and	
aggressive	water	placement.	
The	bottom	line	
A	water	fit	in	the	density	of	a	protein	atom	causes	
especially	 dire	 consequence	 for	 the	 residue	 it	
displaces	 and	 clashes	 with.	 This	 happens	
infrequently,	 and	 mostly	 at	 about	 2Å	 or	 higher	
resolution,	 but	 is	 important	 and	 rather	 easy	 to	
avoid.	Use	the	Phenix	GUI	or	the	MolProbity	multi-
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chart	 to	 search	 for	 bad	 clashes	 between	 protein	
atoms	 and	 modeled	 HOHs,	 and	 look	 at	 them,	
where	 the	 cases	 described	 here	 are	 blindingly	
obvious	 in	 Coot	 or	 kinemage	 graphics.	 Also	
consult	 Headd	 2013	 on	 other	 types	 of	 water	
problems	 to	watch	 for.	We	are	currently	working	
on	 a	 tool	 that	will	make	 that	 process	even	 easier	
by	identifying	water	clashes	and	putting	them	into	
probable	categories	to	guide	their	fixup.	
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FAQ	

Can	I	submit	my	X-ray	model	to	the	Protein	Data	Bank	in	PDB	format?	

The	answer	is	no.	The	PDB	has	moved	away	from	PDB	format	in	favour	of	the	mmCIF	format.	
Read	more	at	Adams,	P.	D.,	Afonine,	P.	V.,	Baskaran,	K.,	Berman,	H.	M.,	Berrisford,	J.,	Bricogne,	G.,	
Brown,	D.	G.,	Burley,	S.	K.,	Chen,	M.,	Feng,	Z.,	Flensburg,	C.,	Gutmanas,	A.,	Hoch,	J.	C.,	Ikegawa,	Y.,	
Kengaku,	Y.,	Krissinel,	E.,	Kurisu,	G.,	Liang,	Y.,	Liebschner,	D.,	Mak,	L.,	Markley,	J.	L.,	Moriarty,	N.	
W.,	Murshudov,	G.	N.,	Noble,	M.,	Peisach,	E.,	Persikova,	I.,	Poon,	B.	K.,	Sobolev,	O.	V.,	Ulrich,	E.	L.,	
Velankar,	 S.,	 Vonrhein,	 C.,	Westbrook,	 J.,	Wojdyr,	M.,	 Yokochi,	M.	 &	 Young,	 J.	 Y.	 (2019).	 Acta	
Crystallogr.	Sect.	Struct.	Biol.	75,	451–454.	
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Automatic	β-peptide	linking	in	Phenix	
Nigel	W.	Moriarty	

2

Introduction	
As	 a	 general	 rule,	 amino	 acids	 polymerise	
using	α–peptide	 linkages.	This	 is	 the	 case	 for	
the	 standard	 biological	 amino	 acids	 –	 their	
amino	groups	are	bonded	to	the	Cα1	atom	(see	
figure	1A).	For	β-peptides,	the	amino	group	is	
bound	 to	 the	 Cβ	 atom	 (see	 figure	 1B).	 A	
concise	 Wikipedia	 entry	 (“Beta-Peptide”	
2018),	 discusses	 the	 details	 including	 that	 β-
alanine	 (shown	 in	 figure	 1B)	 is	 the	 only	
naturally	occurring	of	the	β-peptides.	
On	 10	 June	 2019,	 the	 Protein	 Data	 Bank	
(Burley	 et	 al.	 2019)	 had	 40	 entries	 that	
contain	 β-alanine	 (3-letter	 code	 BAL)	 as	 a	
polymer	 and	 13	 entries	 as	 a	 free	 ligand.	 To	
automatically	 refine	 these	 entries,	 restraints	
for	 the	 entity	 are	 required	 as	well	 as	 linking	
parameters.	 For	 the	 latter,	 links	 between	 the	
amino	 acids	 should	 ideally	 contain	 bonds,	
angles,	dihedrals	and	planes	as	needed.	For	α–
peptide	 linkages,	 there	 is	 one	 bond,	 four	
angles,	 three	dihedral	 angles	and	 two	planes.	
A	 single	 link	 object	 can	 be	 used	 on	 each	 α–
peptide	 bond	 with	 modifications	 for	 cis	
conformations.	 Proline	 (3-letter	 code	 PRO1)	
requires	 a	 different	 set	 of	 cis	 and	 trans	 links	
that,	 essentially,	 replacing	 the	 H	 hydrogen	
atom	with	 the	 Cδ	 carbon	 atom	 and	adjusting	
the	values	appropriately.	This	proline-specific	
link	 is	 applied	 to	 the	 peptide	 bond	 between	
the	proline	and	the	preceding	amino	acid.	

β-peptides	require	two	link	records	–	one	for	
linking	 to	 the	 preceding	 amino	 acid	 and	
another	 to	 link	 to	 the	 following	 peptide.	
Modifying	 the	 standard	 peptide	 links	 to	
accommodate	 the	 changes	 was	 done	 to	
produce	 the	 skeleton	 of	 the	 links.	 To	 obtain	
suitable	 values	 for	 the	 bond	 lengths	 and	
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angles,	 a	 simple	 LBFGS-B	minimization	 using	
the	SciPy	library	(Jones,	Oliphant,	Peterson,	et	
al.	 2001)	 was	 performed	 using	 the	 highest	
resolution	 structure	 –	 4Z0W.	 The	 1.1Å	
structure	 contains	 two	 chains	 with	 four	
instances	of	BAL	in	each.	The	rmsZ	of	the	link	
parameters	was	used	as	the	target.	
The	resulting	values	are	shown	in	table	1	and	
have	been	added	to	the	GeoStd	(Moriarty	and	
Adams,	 n.d.)	 shipped	 with	 Phenix	 version	
1.16.	 The	mechanism	 for	 apply	 peptide	 links	
will	use	the	appropriate	link	in	each	situation.	

Figure	1:	(a)	Diagram	of	α-peptides.	That	is,	the	
amino	groups	are	bonded	to	the	Cα	carbon	atom.	
The	middle	amino	acid	(blue)	is	linked	via	the	red	
bonds	to	the	preceding	“C”	carbon	atom	and	the	
successive	“N”	nitrogen	atom.	(b)	β-alanine	(blue)	
polymerised	with	two	α-peptides	via	similar	links	
as	in	(a).	

1	Greek	letters	are	not	subscripted	to	aid	readability	and	clarity.		
2	Human	readable	codes	(Moriarty,	2016,	CCN,	26-27)	are	the	norm	for	this	publication	but	the	context	
makes	it	clear	that	the	code	for	proline	–	PRO	–	does	not	contain	a	zero.	
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Pre	-	β	
Bond	(Å)	

C–N	 1.335	
Angles	(°)	

O–C–N	 122.7	
Cα–C–N	 115.7	
C–N–Cβ	 122.7	
	

Post	-	β	
Bond	(Å)	

C–N	 1.346	
Angles	(°)	

O–C–N	 121.3	
Cα–C–N	 115.9	
C–N–Cα	 120.8	
	

Table	1:	Ideal	bond	lengths	and	bond	angles	for	pre-	and	post-β-peptide	links.	
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phenix.hbond:	a	new	tool	for	annotation	hydrogen	bonds	
Pavel	V.	Afonine	

Lawrence	Berkeley	National	Laboratory,	Berkeley,	CA	94720,	USA	

Figure	1.	Hydrogen	bond	geometry	definition	
used	 in	 phenix.hbond.	 RD…A	 distance	 is	 not	
used	with	default	settings,	but	can	be	enabled	
if	needed.		

2

Hydrogen	 bonds	 (H-bonds)	 are	 non-covalent	
integrations	 that	 are	 of	 paramount	
importance	 to	 form	and	stabilize	protein	and	
nucleic	 acid	 structure.	 Secondary	 structure	
elements	 such	 as	 helices,	 sheets	 and	
interacting	base	pairs	are	held	together	by	H-
bonds.	In	the	context	of	structure	solution,	the	
information	 about	 H-bonds	 can	 be	 used	 for	
validation	and	refinement.	Validation	typically	
focuses	 on	 the	 geometry	 of	H-bonds,	 such	 as	
donor-acceptor	distance	and	angles,	as	well	as	
overall	count	of	H	bonds	per	structure	that	 is	
expected	 to	 match	 prior	 knowledge	 derived	
from	high-resolution	models.	Ordered	solvent	
molecules	 are	 often	 validated	 based	 upon	
having	 plausible	 hydrogen	 bond	 interactions	
with	the	macromolecule	or/and	other	solvent	
molecules.	In	refinement,	restrains	on	H-bond	
parameters	 (length	 and	 angles)	 are	
particularly	important	at	low	resolution	when	
the	 experimental	 data	 isn’t	 sufficient	 to	
maintain	 correct	 secondary	 structure	
geometry	 (Headd	 et	 al.,	 2012).	 This	 sets	 the	
scene	 to	 introduce	 a	 new	 Phenix	 tool	 called	
phenix.hbond	 that	 is	 designed	 to	 annotate	
hydrogen	bonds	in	atomic	models.	There	are	a	
number	 of	 conventions	 and	 rules	 that	 are	
used	 to	 identify	 H-bonds,	 for	 example	 see	
Torshin	 et	 al.	 (2002)	 and	 Steiner	 (2002).	
phenix.hbond	 uses	 geometric	 parameters	
shown	 in	 figure	 1.	 Running	 phenix.hbond	
requires	 atomic	 model	 in	 PDB	 or	 mmCIF	
format	with	all	hydrogen	atoms	added,	as	well	
as	 ligand	 restraint	 files	 if	 the	model	 contains	
unknown	 to	 the	 library	 items.	 Optionally,	
thresholds	 for	 H-bond	 parameters	 (figure	 1)	
can	 be	 provided	 that	 will	 overwrite	 the	
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defaults.	 The	 program	 generates	 two	 output	
files.	One	is	a	PyMol	script	that	can	be	used	to	
visualize	H-bonds	as	dashed	 lines	 connecting	
corresponding	 atoms	 that	 form	 hydrogen	
bond.	The	other	file	defines	H-bond	restraints	
as	restraints	edits	(Phenix	parameter	file)	that	
are	 suitable	 to	 use	 in	 Phenix	 refinement.	
Output	to	the	log	includes	a	list	of	all	H	bonds	
found	that	match	criteria	in	figure	1,	as	well	as	
various	 statistics	 such	 as	 histograms	 of	 H-
bond	lengths	and	angles.	

While	 there	 is	 no	 particular	 reason	why	 this	
should	 not	 work	 for	 all	 bio-macromolecules,	
currently	phenix.hbond	 is	 only	 optimized	 and	
tested	 to	 work	 with	 proteins,	 which	 is	 the	
limitation	that	will	be	removed	in	future.		

4
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#Panel 1 
import numpy as np 
import time 
 
def tst_python(x): 
    result = 0 
    for xx in x: 
        result += xx 
    return result 
 
N=int(1e6) 
x = np.random.random(int(N)) 
t0 = time.time() 
rp = tst_python(x) 
t1 = time.time() 
time_python = t1-t0   
 
print time_python, 'seconds' 
 
>  
0.206596851349 seconds 

#Panel 2 
from scitbx.array_family import 
flex 
import numpy as np 
import time 
 
def tst_flex(x): 
    return flex.sum(x) 
 
N=int(1e6) 
x = np.random.random( int(N) ) 
x_as_flex = flex.double( x ) 
t0 = time.time() 
rp = tst_flex(x_as_flex) 
t1 = time.time() 
time_flex = t1-t0 
 
print time_flex, 'seconds' 
 
>  
0.000848054885864 seconds 
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Bytes	and	Bobs	:	Accelerating	python	code	with	Numba.	
Petrus	H.	Zwarta,b		

a	Molecular	Biophysics	and	Integrated	Bioimaging	Division,	Lawrence	Berkeley	National	Laboratory,	Berkeley,	CA	94720	
b	Center	for	Advanced	Mathematics	in	Energy	Research	Applications,	Lawrence	Berkeley	National	Laboratory,	Berkeley,	CA	94720	

Correspondence	email:	PHZwart@lbl.gov		

This	is	a	lightweight	introduction	to	something	I	encountered	and	found	useful	and	interesting.	Although	the	material	
presented	here	might	be	standard	knowledge	for	some	of	you,	it	certainly	wasn’t	for	me.	I	provide	these	insights	here	
in	the	hope	that	could	be	of	use	to	some.	The	article	below	is	by	no	means	complete,	exhaustive	or	unbiased.		

2

Introduction	
Coding	 in	 python	 is	 great,	 but	 one	 of	 the	 major	
downsides	is	that	is	can	be	rather	slow,	especially	
when	 iterating	 over	 large	 arrays.	 Have	 a	 look	 at	
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the	following	example	where	we	compute	the	sum	
of	 a	 large	 number	 of	 values	 in	 an	 array	 using	 a	
simple	python	for-loop	(panel	1):		

4

Although	a	0.20	second	seems	decent	enough,	the	
cctbx	 build-in	 methods	 available	 from	 the	
scitbx.array_family	 speed	 this	 up	 dramatically	
(panel	2).	

We	see	 that	 there	 is	a	 speedup	of	 a	 factor	 of	250	
over	 the	 plain	 python	 code.	 As	 the	 reader	might	
recall,	this	is	accomplished	in	the	following	way:	

1. Writing	 a	 dedicated	 C++	 function	 that	
performs	 the	 numerical	 operation,	 a	
summation	in	this	case.	

2. Writing	 a	 C++	 wrapper	 using	 the	 boost–
python	 tools	 that	 exposes	 this	 functionality	
to	python.	

3. Recompiling	a	portion	of	the	CCTBX	library.		

Although	 these	 steps	are	 by	no	means	hard,	 they	
can	 be	 daunting	 and	 cumbersome,	 especially	
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when	you	haven’t	done	this	for	a	while.	The	boost-
python	mechanism	 has	 been	 the	 driving	 force	 in	
providing	 algorithms	 at	 acceptable	 speeds	within	
the	CCTBX	and	PHENIX	software	frameworks	[1],	
and	 in	 the	 hand	 of	 seasoned	 CCTBX	 and	 PHENIX	
developers,	is	a	marvelous	tool	to	provide	code	at	
the	highest	performance	levels.	

Numba	
The	 main	 drawback	 of	 boost-python	 however,	
especially	 for	 the	 casual,	 frustrated,	 or	 time-
constrained	developer	[2]	is	the	need	to	dive	back	
into	C++	to	get	stuff	done.	An	alternative	approach	
is	however	available:	the	numba	toolkit.	Numba	is	
a	 just-in-time	 compiler	 that	 translates	 “python	
functions	into	optimized	machine	code	at	runtime	
using	the	industry	standard	LLVM	compiler”	[3].		
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#Panel 3 
import numba 
import numpy as np 
import time 
 
@numba.jit(nopython=True,cache=True) 
def tst_numba(x): 
    result = 0 
    for xx in x: 
        result += xx 
    return result 
 
N=1e6 
x = np.random.random(int(N)) 
 
t0 = time.time() 
rn = tst_numba(x) 
t1 = time.time() 
time_numba = t1-t0 
print time_numba, 'seconds' 
 
x = np.random.random(int(N)) 
t0 = time.time() 
rn = tst_numba(x) 
t1 = time.time() 
time_numba = t1-t0 
print time_numba, 'seconds' 
 
> First execution 
0.822153091431 seconds 
0.00154995918274 seconds 
 
> Second execution 
0.108898162842 seconds 
0.00156705284119 seconds 
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Although	 I	 am	 sure	 that	 the	 computer	 science	
behind	 the	 LLVM	 compiler	 and	 its	 python	
interface	is	fascinating	(see	for	instance	[4,5]),	it	is	
more	 productive	 to	 focus	 on	 how	 to	 use	 it	 and	
what	to	expect.	

The	use	of	numba	is	relatively	straightforward.	By	
adding	 a	 specific	 numba	 decorator	 (@numba.jit)	
to	a	function,	an	optimized	function	is	compiled	at	
runtime	that	is	almost	just	as	fast	as	compiled	C++	
code.	An	illustrative	example	 is	provided	in	panel	
3.		

As	 you	 can	 see,	 the	 first	 function	 call	 upon	
execution	 is	 about	 a	 factor	 of	 4	 slower	 as	
compared	 to	 native	 python	 code.	 The	 second	
identical	 function	 call	 within	 the	 same	 python	
script	(with	a	 fresh	set	of	random	numbers)	runs	
in	 0.0015	 seconds.	 This	 is	 only	 a	 factor	 2	 slower	
than	 the	 optimized	 C++	 code,	 and	 is	 similar	 to	 a	
numpy.sum()	function	call	(data	not	shown).	

The	bulk	of	the	time	upon	first	execution	is	spend	
in	the	compilation	of	the	numba-decorated	python	
code.	At	the	second	function	call,	 this	compilation	
is	 no	 longer	 needed	 resulting	 in	 a	 very	 nice	
performance.		

Note	 that	 the	 keyword	 ‘cache=True’	 can	 reduce	
some	of	the	compilation	time	required	at	the	first	
function	 call:	 only	 0.1	 seconds	 was	 need	 for	 the	
initial	 compilation	 when	 the	 script	 was	 re-
executed.	 Note	 that	 the	 compilation	 time	 is	
independent	 of	 the	 argument	 provided	 to	 the	
function:	if	the	first	function	call	to	tst_numba	is	
executed	 on	 an	 array	 with	 length	 3,	 the	 timings	
are	the	same	(data	not	shown).		

The	runtimes	are	summarized	in	Figure	1	for	all	5	
cases.	

Outlook	
Numba	supports	numpy	data	 types,	which	makes	
it	very	easy	to	use.	Debugging	numba	functions	is	
relatively	straightforward,	the	documentation	and	
examples	 on	 the	 numba	 website	 are	 fairly	
instructive.	A	possible	drawback	of	numba	is	that	
it	 not	 yet	 supports	 all	 object-oriented	 features	 of	
python,	forcing	one	to	write	a	separate,	dedicated	
numba	 functions	 for	 numerical	 task	 that	 can	 be	
called	from	within	a	class.		

As	 the	 toy	 examples	 indicate,	 a	 C++	
implementation	 seems	 to	 get	 the	 fastest	 code	
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possible,	 albeit	 at	 the	 cost	 of	 having	 to	 deal	with	
boost	 python.	 The	 use	 of	 numba	 allows	 one	 to	
code	 in	 native	 python,	 using	 numpy	 objects,	 but	
without	 a	 potential	 boost-python	 struggle.	 If	 the	
numba	 function	 coded	 up	 is	 called	 repeatedly,	
such	 as	 a	 target	 function	 and	 its	 derivatives	 in	 a	
minimizer,	initial	compilation	costs	are	small	price	
to	 pay	 to	 strike	 a	 balance	 between	 run-time	
efficiency	and	developer	time.			

Besides	 the	 illustrated	 accelerations	 on	 basic	
python	code,	numba	also	features	GPU	support	for	
CUDA	systems	and	for	AMD	ROC	GPUS	[3].		

Numba	 can	 be	 installed	 with	 pip	 (including	 the	
required	compiler)	thus:	

cctbx.python -m pip install numba  

or	via	conda.	



	

	 21	

SHORT Communications 

Computational	Crystallography	Newsletter	(2019).	10,	19–21	

	

Figure	1:	Runtimes	for	the	summation	of	1	million	random	numbers.	The	vertical	axis	is	on	a	logarithmic	
scale.	
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Introduction	
The	most	 important	 question	when	 conducting	 a	
serial	 crystallographic	 (SX)	experiment	 is	 “Have	 I	
collected	 enough	 data?”	 SX	 experiments	 at	 X-ray	
free	electron	 lasers	 (XFELs)	 can	produce	millions	
of	 images	 with	 hundreds	 of	 thousands	 of	
diffraction	 patterns.	 Each	 pattern	 needs	 to	 be	
indexed	 to	 determine	 the	 crystal	 orientation	
matrix	 and	 unit	 cell	 dimensions,	 and	 then	
integrated	to	produce	intensities	for	the	observed	
Miller	 reflections.	 These	 images	 are	 ‘stills’,	
meaning	 they	 are	 collected	 without	 rotating	 the	
crystal	 in	 the	 beam	 due	 to	 short	 pulse	 length,	
usually	 10s	 of	 femtoseconds	 long	 (reviewed	 in	
Bergmann	 et	 al.	 (2017)).	 Similarly,	 serial	
crystallography	 experiments	 at	 synchrotrons	 can	
produce	 hundreds	 of	 thousands	 images,	 also	 all	
stills,	 using	 fixed-target	 mounting	 systems	 on	
chips	 or	 loops	 and	 then	 raster-scanning	 through	
the	 crystals	 without	 rotating	 the	 sample	 in	 the	
beam	 (reviewed	 in	 Sierra	 et	 al.	 (2018)).	 The	
amount	 of	 data	 produced	by	 either	 approach	 can	
make	 it	 difficult	 to	 determine	 whether	 sufficient	
data	have	been	collected.	

While	 estimates	 of	 completeness,	 multiplicity	 of	
measurements,	 signal	 vs.	 noise,	 cross-correlation	
statistics,	 and	 unit	 cell	 isomorphism	 can	 all	 give	
useful	 insights	 as	 to	 dataset	 quality,	 knowing	
when	 a	 dataset	 answers	 a	 particular	 scientific	
question	 can	 only	 come	 from	 examining	 the	
electron	 density	 maps.	 The	 specifics	 generally	
depend	 on	 the	 type	 of	 experiment	 being	
performed,	 but	 they	 usually	 rely	 on	 examining	
difference	 density	 in	 the	 maps,	 often	 comparing	
two	 time	 points,	 two	mixing	 conditions	 or	 other	
such	 treatments	 against	 each	 other.	 Time	 at	 an	
XFEL	 is	 scarce,	 therefore	 feedback	 as	 to	 sample	
quality	 and	 data	 completeness	 as	 determined	
from	electron	density	maps	needs	 to	be	available	
as	fast	as	possible.	

Challenges	 to	 rapid	 data	 processing	 include	
ensuring	 accurate	 detector	 calibration,	
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aggregating	 and	 visualizing	 hit	 rates,	 crystal	
quality,	 automated	 processing	 job	 submission,	
monitoring	 the	 available	 computing	 systems,	
keeping	 samples	 and	 associated	 metadata	
organized,	 and	 rapidly	 merging	 data	 to	 create	
electron	 density	 maps.	 Particularly	 at	 XFELs	
where	 experimental	 teams	 can	 involve	 20+	
scientists,	 results	 need	 to	 be	 communicated	
effectively	 to	 all	 parties,	 including	 sample	
preparation	 teams,	 beamline	 scientists,	 sample	
injection	 specialists	 and	 data	 analysts.	 Finally,	
processing	 needs	 to	 be	 automated	 to	 allow	
scientists	 to	 spend	 time	 studying	 the	 data	 itself	
rather	 than	 focusing	 on	 the	 mechanics	 of	
submitting	many	jobs	and	monitoring	their	state.	

To	 solve	 these	challenges	we	have	developed	 the	
cctbx.xfel	 GUI	 (graphical	 user	 interface).	 This	
program,	 under	 active	development,	allows	users	
to	 rapidly	 move	 through	 all	 phases	 of	 serial	
crystallographic	 data	 reduction	 in	 an	 organized	
matter,	 taking	 advantage	 of	 whatever	 local	
computing	 resources	 are	 available.	 The	 GUI	 is	
open	 source	 and	 part	 of	 the	 cctbx	 and	 DIALS	
software	packages	 (Grosse-Kunstleve	 et	al.,	2002,	
Hattne	et	al.,	2014,	Winter	et	al.,	2018).	

In	 this	 article	 we	 detail	 two	 tutorials	 for	
processing	 XFEL	 data	 using	 the	 cctbx.xfel	 GUI,	
including	 refining	 the	 geometry.	 In	 the	 first	
tutorial	we	 use	 data	 from	 Nakane	 et	 al.	 (2016a).	
This	 is	 an	 iodine	 derivatized	 bacteriorhodopsin	
protein	 sample	 (HAD13a)	 collected	 on	 the	 octal-
sensor	MPCCD	detector	 at	SACLA.	 This	 dataset	 is	
useful	 for	 a	 tutorial	 since	 the	 initial	 geometry	 is	
good	enough	to	index	out	of	the	box	and	it	doesn't	
require	 further	 software	 libraries.	 In	 the	 second	
tutorial	 we	 process	 a	 thermolysin	 dataset	
collected	on	the	CSPAD	detector	at	LCLS,	following	
the	approaches	shown	in	Brewster	et	al.	(2018).	

We	also	show	here	how	the	GUI	could	be	used	to	
process	data	from	synchrotrons,	where	the	output	
files	 are	 typically	 stored	 in	 directories	 filled	with	
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single	 image	 files.	 The	 tutorials	 here	 provide	 a	
demo	 designed	 to	 run	 on	 a	 small	 Linux	 node	
outside	of	the	facilities	of	interest,	but	they	can	be	
adapted	 easily	 to	 run	 at	 full	 scale	 either	 at	 these	
facilities	or	other	computing	environments.	

SX	data	processing	workflows	
We	 re-state	 here	what	we	wrote	 in	 our	 previous	
newsletter	article	(Brewster	et	al.,	2016),	updated	
to	be	more	general	across	SX	experiments	outside	
of	LCLS.	It	has	been	our	experience	that	analyzing	
data	 collected	 using	 serial	 crystallography	 (SX)	
typically	requires	three	distinct	processing	stages	
labeled	 here	 calibration,	 discovery,	 and	 batch.	
Calibration	refers	to	refining	the	geometry	of	the	
experiment,	 but	 also	 includes	 some	 pre-
processing	steps,	such	as	creating	bad	pixel	masks.	
Using	 these	inputs,	 initial	parameters	are	derived	
that	 describe	 the	 experiment,	 such	 as	 detector	
distance,	any	beam	correction	parameters	needed	
and	so	forth.	During	discovery,	the	user	examines	
individual	 diffraction	 patterns	 and	 searches	 for	
appropriate	 parameters	 for	 data	 reduction,	
including	 hitfinding	 parameters	 if	 used,	
spotfinding	 parameters,	 target	 unit	 cell	
dimensions,	 crystal	 symmetry	 and	 an	 optimal	
merging	 strategy.	 Finally,	when	optimal	 software	
configuration	is	established,	the	user	enters	batch	
processing	 mode,	 endeavoring	 to	 maximize	 the	
parallel	 computing	 options	 offered	 and,	 during	
live	 experiments,	 attempting	 to	 provide	
constructive	feedback	to	beam	line	operators	in	as	
close	 to	 real-time	 as	 possible.	 After	 the	
experiment,	 the	user	will	often	need	to	 reprocess	
the	 runs	 collected	 in	 batch	 mode.	 During	 batch	
processing,	 the	 user	 will	 continue	 to	 refine	
processing	 parameters	 as	 the	 results	 are	
evaluated,	 perhaps	 even	 revising	 initial	
experimental	 geometry	 estimates.	 Thus	 the	 three	
stages	are	somewhat	 fluid	as	 feedback	 from	 later	
stages	may	call	for	repeating	earlier	stages.	

Processing	at	scale	using	MySQL	
Aggregating	 feedback	 from	 SX	 experiments	 has	
often	been	done	by	searching	through	log	files	or	
result	 files	 and	 creating	 plots	 and	 tables.	 As	
experiments	get	 large,	with	 thousands	to	millions	
of	 images	 being	 processed	 across	many	 datasets,	
the	scale	of	the	data	complicates	this	kind	of	data	
scraping.	 To	 solve	 this	 problem,	 we	 used	 a	
database	 system	 implemented	 in	MySQL	 to	 store	
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and	 retrieve	 information	 about	 every	 frame	
processed.	The	system	allows	us	to	use	structured	
queries	 to	 quickly	 sort,	 aggregate	 and	 visualize	
crystal	indexing	results	and	integration	quality.	

At	 LCLS,	 the	 facility	 staff	 has	 provided	 a	 MySQL	
server	for	general	users.	Access	is	trivial	to	obtain	
by	 emailing	 the	staff.	For	other	 facilities	we	have	
provided	a	program,	cctbx.xfel.ui_server	that	wraps	
MySQL	 and	 initializes	 the	 database	 from	 scratch.	
Users	 at	 any	 facility	 can	 run	 this	 program,	 as	
described	 below,	 either	 locally	 or	 on	 a	 computer	
cluster.	 The	 cctbx.xfel	 GUI	 will	 connect	 to	 this	
server	 and	 use	 it	 to	 track	 jobs,	 processing	
parameters	and	sample	quality	for	rapid	feedback.	
Because	 MySQL	 is	 designed	 as	 an	 enterprise	
solution	 for	 managing	 large	 amounts	 of	 data,	 as	
experiments	 expand	 in	 scope,	 the	 backend	 for	
managing	the	large	amounts	of	metadata	will	scale	
as	well.	

Data	processing	tutorials	
The	two	tutorials	presented	here	describe	how	to	
process	 datasets	 from	 SACLA	 and	 LCLS.	We	 first	
explain	how	to	 install	and	configure	 the	cctbx.xfel	
software	 and	 how	 to	 acquire	 the	 tutorial	 data,	
then,	after	initial	calibration,	we	demonstrate	how	
to	 use	 the	GUI	 itself	 to	 submit	 and	monitor	 jobs,	
and	 visualize	 the	 processing	 results.	 Merging	 is	
described,	 but	 this	 section	 is	 under	 active	
development	 and	 is	 likely	 to	 change	 after	 this	
article	is	published.	

Installation	
The	 cctbx.xfel	 GUI	 comes	 with	 DIALS	 and	 Phenix	
installations	 and	will	 run	natively	 after	 installing	
MySQL.	 What	 follows	 are	 directions	 for	 a	
standalone	 (non-LCLS)	 installation.	After	 that	 are	
directions	 for	 an	 LCLS	 installation	 that	 includes	
psana,	 the	 package	 needed	 to	 read	 the	 LCLS	 file	
format	 (XTC)	 natively.	 Both	 procedures	 assume	
the	user	is	on	a	single	node	system,	without	access	
to	 the	 original	 facility’s	 computers,	 though	
queuing	 support	 using	 multiple	 nodes	 for	 large	
batch	 processing	 is	 also	 described.	 These	
directions	are	verified	to	work	on	Linux	Centos	7.	

Let	 $WORKING	 be	 a	 new,	 empty	 directory.	 Note,	
here	 $WORKING	always	 refers	 to	 the	 full	 path	 to	
that	directory.	Also	 let	$NPROC	be	 the	number	of	
processors	available	on	your	system,	for	example,	
32.	
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Standalone	builds	
Download	the	installation	script:	
wget	https://raw.githubusercontent.com/cctbx/cctbx_project/master/xfel/util/standalone_xfelgui_installer.sh 

Run	the	script,	providing	the	destination	folder:	

chmod	+x	standalone_xfelgui_installer.sh	

./standalone_xfelgui_installer.sh	$WORKING 

The	script	will	download	the	 latest	version	of	DIALS,	 install	 it	 in	the	$WORKING	folder,	 install	MySQL,	
and	create	a	setup.sh	script	that	you	can	use	to	put	DIALS	in	your	path:	

source	$WORKING/setup.sh 

LCLS	builds	

The	cctbx.xfel	GUI	 is	available	 for	all	users	 at	 LCLS	at	 /reg/g/cctbx.	However,	 for	 the	purposes	of	 this	
tutorial,	we	assume	no	access	 to	 the	 LCLS	computing	systems.	To	 use	 the	psana	 libraries,	we	need	 to	
build	the	software	manually;	we	cannot	use	a	pre-built	DIALS	bundle.	The	installation	script	does	this.		

Download	the	script:	

wget	https://raw.githubusercontent.com/cctbx/cctbx_project/master/xfel/util/lcls_xfelgui_installer.sh 

Run	the	script,	providing	the	destination	folder	and	the	number	of	processors:	

chmod	+x	lcls_xfelgui_installer.sh	

./lcls_xfelgui_installer.sh	$WORKING	$NPROC 

The	script	will	download	the	latest	version	of	DIALS,	psana,	MySQL,	and	other	dependencies,	build	the	
software,	and	create	a	setup.sh	script	that	you	can	use	to	put	DIALS	in	your	path:	

source	$WORKING/setup.sh 

For	more	information	on	developer	builds	of	DIALS,	see	
https://dials.github.io/documentation/installation_developer.html	

Download	and	prepare	tutorial	data	
The	cctbx.xfel	GUI	requires	a	run	to	have	finished	being	collected	before	processing	begins.	Therefore	it	
has	multiple	modes	for	monitoring	for	new	data,	depending	on	the	facility.	LCLS	has	a	webservice	that	
can	be	used	to	query	if	data	is	available.	SACLA	uses	Cheetah	to	prepare	HDF5	files	from	the	raw	data,	
and	 indicates	 it	 is	 finished	 using	 a	 status	 file	 (Barty	 et	 al.,	 2014,	 Nakane	 et	 al.,	 2016b).	 Standalone	
facilities	such	as	synchrotrons	often	collect	a	constant	number	of	 files	in	a	single	raster.	 If	all	else	fails,	
time	stamps	and	file	sizes	can	be	monitored.	
We	download	the	data	from	cxi.db	(Maia,	2012):	
SACLA	tutorial	data	

• cd	$WORKING;	mkdir	-p	data/run1;	cd	data/run1	
• Get	a	run	from	HAD13a	from	here:	https://www.cxidb.org/data/43/HAD13a/.	Here	we	use	the	

first	run	which	had	the	fewest	hits	and	is	the	smallest	file	size:	wget	
http://portal.nersc.gov/archive/home/projects/cxidb/www/43/HAD13a/run371999-0.h5	

• Create	a	Cheetah	status.txt	file	so	the	run	will	be	seen	by	the	GUI:		
echo	Status=Finished	>	status.txt 

LCLS	tutorial	data	
These	directions	assume	the	user	is	not	working	on	the	LCLS	interactive	nodes.	

• cd	$WORKING;	mkdir	lcls;	cd	lcls	
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• LCLS	uses	a	.dat	file	that	maps	experiment	names	to	experiment	number.	Create	a	.dat	file	with	
only	the	thermolysin	experiment	in	it:	

o mkdir	ExpNameDb	
o echo	"280	CXI	cxi78513"	>	ExpNameDb/experiment-db.dat	

• Download	a	run	from	cxi.db,	entry	81	(see	https://www.cxidb.org/id-81.html):	
o mkdir	-p	CXI/cxi78513/xtc;	cd	CXI/cxi78513/xtc	
o wget	

http://portal.nersc.gov/archive/home/projects/cxidb/www/81/cxi78513/xtc/e280-
r0013-s00-c00.xtc	

o Note,	this	is	81.8	GB!	And	it’s	only	1/5th	of	run	13!	
• Build	the	small	data	file	needed	to	read	the	xtc	file:	

o mkdir	smalldata	
o smldata	-f	e280-r0013-s00-c00.xtc	-o	smalldata/e280-r0013-s00-c00.smd.xtc	

• Download	 the	 calibration	 folder.	 This	 includes	 the	 CSPAD	 geometry	 file	 refined	 in	 Brewster	
2018	 (see	 also	 https://github.com/phyy-nx/dials_refinement_brewster2018)	 and	 the	 CSPAD	
dark	pedestal	files.	

o cd	$WORKING/lcls/CXI/cxi78513	
o wget	

http://portal.nersc.gov/archive/home/projects/cxidb/www/81/cxi78513/calib.tar.gz	
o tar	-xvf	calib.tar.gz;	rm	calib.tar.gz	

• Export	 variables	 instructing	 psana	 where	 the	 data	 are	 (note	 you	 can	 add	 these	 lines	 to	 your	
setup.sh	script	from	the	installation	section	after	the	source	commands).	

export SIT_DATA=$WORKING/lcls 
export SIT_ROOT=$SIT_DATA 
export SIT_PSDM_DATA=$SIT_DATA 

If	the	user	is	running	at	LCLS	on	their	own	data,	all	of	these	steps	can	be	skipped	as	psana	has	defaults	
that	can	find	the	data	in	/reg/d/psdm,	the	data’s	default	location.	

Start	MySQL	
The	MySQL	server	 is	wrapped	by	the	program	cctbx.xfel.ui_server.	This	program	takes	as	an	argument	
the	directory	in	which	the	database	will	be	initialized,	which	directory	must	be	empty	the	first	time	the	
program	is	ran.	The	first	time	the	program	is	ran,	a	root	password	will	be	requested	which	will	be	used	
for	the	root	database	account	that	the	program	will	create	and	set	up.	This	should	not	be	your	system	
root	password.	Subsequently,	the	program	can	be	run	on	a	cluster	or	locally,	as	needed.	

• cd	$WORKING	
• cctbx.xfel.ui_server	db.port=3307	db.server.basedir=$WORKING/MySQL	db.user=guidemo2019	

db.name=guidemo2019	
o Note,	the	db.user	and	db.name	fields	create	a	MySQL	user	and	a	MySQL	database	within	

the	MySQL/data	folder.	A	password	can	also	be	provided	but	it	would	be	stored	as	
unencrypted	text	in	the	GUI	settings	file	so	this	is	not	recommended.	Here	we	leave	the	
password	blank.	

• Provide	a	root	password	and	wait	until	"Raising	max	connections"	appears	
• Background	the	process	(CTRL-Z,	then	type	bg)	
• Note,	when	done	processing,	shut	the	server	down	using	fg	followed	by	CTRL-C	

This	step	can	be	skipped	when	running	at	LCLS	itself,	provided	that	facility	staff	has	granted	access	to	
psdb-user.slac.stanford.edu.	

Initial	calibration	and	masking	
In	the	case	of	HAD13a,	the	initial	geometry	is	sufficient	for	 indexing.	 If	 it	were	not,	 the	initial	detector	
position	 could	 be	 determined	using	 a	 powder	 pattern	 from	a	 known	 sample,	 such	 as	 silver	 behenate	
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(AgBeh).	To	do	this,	using	the	averaging	commands	below	on	the	AgBeh	dataset,	run	dials.image_viewer	
and	 use	 the	 Actions:	 show	 unit	 cell	 tool	 to	 determine	 the	 new	 beam	 center	 and	 detector	 distance	 by	
fitting	the	overlaid	rings.	

Given	 a	 good	 initial	 geometry,	 follow	 these	 steps	 to	 create	 an	untrusted	pixel	mask	using	 an	 average	
image.	This	is	optional	because	for	the	HAD13a	dataset,	the	beamstop	is	a	simple	circle	in	the	middle	of	
the	 image	and	it	 can	be	masked	out	using	a	 low-resolution	 filter	during	processing.	However,	you	can	
use	dials.image_viewer	tool	to	create	a	custom	mask	if	needed.	

• cd	$WORKING	
• mkdir	averages;	cd	averages	
• dxtbx.image_average	../data/run1/run371999-0.h5	-v	-n	$NPROC	
• dials.image_viewer	*.cbf	
• Page	to	avg.cbf	if	it's	not	already	displayed	
• Actions:	show	mask	tool	
• The	goal	is	to	make	a	low	resolution	mask	around	the	beamstop.	If	this	were	a	single	panel	

image,	the	circle	tool	would	work,	but	because	it	is	multipanel,	each	inner	tile	needs	its	own	
mask.	Use	the	polygon	tool	four	times.	When	done,	click	save	mask.	A	pixels.mask	file	will	be	
created.	

• Test	the	mask:	dials.image_viewer	*.cbf	mask=pixels.mask.	Click	the	show	mask	button	in	the	
settings	dialog.	The	masked	pixels	will	turn	red.	

For	 the	LCLS	 thermolysin	data,	 the	 detector	 has	 already	been	 calibrated	 (see	Brewster	 et	al.	 (2018)).	
Follow	 the	 instructions	 at	 https://github.com/phyy-
nx/dials_refinement_brewster2018/wiki/Averages-and-masking	to	generate	an	untrusted	pixel	mask.	

Run	and	configure	the	cctbx.xfel	GUI	
To	start	the	cctbx.xfel	GUI,	on	the	command	line,	run:	

• cd	$WORKING	
• cctbx.xfel 

At	 this	 point	 several	 settings	 dialogs	will	 be	 used	 to	 configure	 the	 processing	 environment.	 In	 these	
examples,	 local	processing	is	used	(single	node),	but	alternatives	are	discussed	below	 including	multi-
node	clusters.	
	
Standalone	GUI	(HAD13a	example)	
	
Use	the	following	settings	for	the	HAD13a	dataset:	

• Login	window:	
o Experiment	 Tag:	 common.	 The	 experiment	 tag	 is	 a	 way	 to	 group	 processing	 results	

together.	 We	 tend	 to	 use	 ‘common’	 to	 indicate	 a	 set	 of	 processing	 results	 that	 are	
available	for	all	contributors	to	an	experiment,	but	any	string	of	characters	can	be	used.	

o Facility:	Standalone	
o Output:	$WORKING/results	

• DB	Credentials	window:	
o DB	Host	name:	127.0.0.1	
o DB	Port	number:	3307	
o DB	name:	guidemo2019	
o DB	user	name:	guidemo2019	

• Facility	options	window:	
o Folder	to	monitor:	$WORKING/data	
o Monitor	for:	folders	
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o File	matching	template:	run*.h5	
o Check	the	‘Files	are	composite’	box	

• Advanced	settings:	
o Multiprocessing:	local	
o Total	number	of	processors:	$NPROC	
o Processing	 back	 end:	 cctbx.xfel	 (standalone	mode).	Note	 there	 are	 other	 options	 here,	

including	the	possibility	of	running	other	programs.	Contact	the	authors	if	interested.	
• Note,	the	DB	host	name	will	vary	depending	on	what	system	the	MySQL	database	is	running	on.	

For	this	tutorial,	running	on	a	local	node,	we	use	the	IP	address	of	‘localhost’.	
• Tip:	the	GUI	saves	your	settings	to	~/.cctbx.xfel/settings.phil,	which	will	be	automatically	used	

the	next	time	you	run	the	GUI.	
	
Note,	if	running	the	GUI	at	SACLA	during	an	experiment,	set	the	multiprocessing	system	to	PBS,	then	use	
the	 blX-occupancy	 queue	 (where	 X	 is	 the	 beamline	 number)	 and	 specify	 the	 appropriate	 number	 of	
cores	 per	 node	 (currently	 28	 cores)	 and	 the	 total	 number	 of	 cores	 desired.	 If	 that	 number	 is	 >28,	
multiple	nodes	will	be	used	per	job.	
	
Multiple	users	can	run	the	GUI	at	the	same	time	using	the	same	experiment	tag	and	database.	They	will	
see	the	same	set	of	processing	results	as	the	single	MySQL	backend	is	queried.	However,	it	is	advised	to	
only	monitor	for	new	runs	and	submit	jobs	from	a	single	GUI	instance.	
	
LCLS	GUI	(thermolysin	example)	

• Login	window:	
o Experiment	Tag:	common.		
o Facility:	LCLS	
o Experiment:	cxi78513	
o Output:	$WORKING/results	

• DB	Credentials	window:	
o DB	Host	name:	127.0.0.1	
o DB	Port	number:	3307	
o DB	name:	guidemo2019	
o DB	user	name:	guidemo2019	

• Facility	options	window:	
o LCLS	user	name:	<Leave	blank	or	get	from	staff>	
o LCLS	password:	<Leave	blank	or	get	from	staff>	
o These	credentials	are	for	the	LCLS	web	service	for	monitoring	for	new	runs.	The	service	

does	not	use	the	same	credentials	as	the	facility’s	Unix	accounts.		If	the	credentials	are	
not	provided,	the	GUI	instead	looks	for	runs	in	the	xtc	folder	for	the	experiment.	

• Advanced	settings:	
o Multiprocessing:	local	
o Total	number	of	processors:	$NPROC	
o Processing	back	end:	cctbx.xfel	(LCLS	mode).	

	
Note	 these	 instructions	 are	 for	 running	 outside	 of	 LCLS.	 If	 using	 the	 LCLS	 provided	 MySQL	 server,	
specify	the	DB	host	name	as	psdb-user.slac.stanford.edu,	 leave	the	port	blank	(it	will	default	to	3306),	
and	 specify	 the	 DB	 name	 and	 DB	 user	 name	 provided	 to	 you	 by	 the	 facility	 staff.	 Additionally,	 for	
multiprocessing	 select	 LSF	 and	 then	 select	 either	 the	 psanaq	 (offline	 processing)	 or	 a	 high	 priority	
queue	if	processing	during	an	experiment.	

GUI	tab:	Runs	
The	GUI	is	organized	into	a	series	of	tabs.	The	first	tab,	runs,	shows	the	runs	discovered	by	the	GUI.	Click	
the	‘Watch	for	new	runs’	button	and	after	a	moment	the	available	runs	will	appear.	A	run	represents	a	
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continuous	 time	 of	 data	 collection	 where	 all	 the	
parameters	 will	 the	 same.	 At	 a	 synchrotron,	 this	
will	 often	 represent	a	 single	 raster	 scan.	The	GUI	
will	 continue	 to	monitor	 for	 new	 data	 every	 few	
seconds.	 You	 can	 disable	 the	 monitoring	 by	
clicking	the	‘Watch	for	new	runs’	button	again.	

We	 found	 it	 difficult	 to	 keep	 track	 of	 which	 run	
numbers	 correspond	 to	 which	 sample	 and	 the	
sample	conditions.	We	typically	 log	metadata	in	a	
spreadsheet	during	the	beamtime,	but	we	wanted	
to	be	able	to	sort	runs	by	this	metadata	within	the	
GUi.	 To	 this	 end,	 runs	 can	 be	 tagged	 with	
descriptive	terms,	such	as	 ‘thermolysin’,	 ‘batch	5’,	
‘timepoint	 3’,	 and	 so	 forth.	 Click	 ‘Manage	 tags’	 to	
create,	rename,	and	remove	tags.	Click	a	run	to	tag	
it,	or	click	 ‘Change	tags	on	multiple	runs’	to	work	
with	many	tags	at	once.	During	data	collection,	use	
the	 ‘Manage	 persistent	 tags’	 feature	 to	
automatically	 tag	new	runs	with	a	 tag	set	as	 they	
arrive.	Use	these	tags	to	group	runs	together	using	
words	 appropriate	 to	 your	 experiment.	 You	 can	
use	 these	 tags	 in	 the	 subsequent	 plots	 to	 quickly	
switch	between	which	data	is	being	examined.	

GUI	tab:	Trials	
The	 list	 of	 parameters	 available	 to	 the	 core	
processing	 program	 dials.stills_process	 is	
extensive,	but	most	of	the	time	only	a	few	defaults	
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need	to	be	changed.	We	have	found	that	during	an	
experiment	 the	 same	 data	 needs	 to	 be	 re-
processed	 several	 times	 as	 it	 calibrated	 and	
explored,	 changing	 geometry,	 spotfinding	 and	
indexing	 parameters.	 We	 group	 processing	
attempts	 that	 change	 parameters	 that	 generally	
refer	 to	 the	 crystal	 together	 into	 trials.	 For	
example,	 trial	 0	 may	 be	 our	 initial	 indexing	 trial	
based	 on	 the	 published	 unit	 cell,	 but	 after	
examining	 the	 results,	 we	 see	 the	 unit	 cell	 is	
slightly	 different,	 so	 we	 resubmit	 the	 jobs	 into	 a	
new	 trial	 1	 with	 a	 better	 unit	 cell	 estimate.	 The	
output	folders	are	organized	by	runs	and	trials	to	
keep	the	data	organized.	

Further,	 we	 have	 often	 found	 that	 sequential	
groups	 of	 runs	 tend	 to	 have	 the	 same	 set	 of	
detector-specific	 parameters,	 such	 as	 geometry.	
Therefore	 we	 create	 run	 groups	 (or	 run	 blocks)	
that	 identify	 sets	 of	 runs	 that	 should	be	similarly	
behaved.	 Thus,	 a	 trial	 has	 sample	 and	 crystal-
specific	parameters,	and	a	trial	comprises	a	set	of	
run	 groups.	 Note	 that	while	 tags	 and	 run	 groups	
both	organize	runs	into	logical	groupings,	they	are	
used	 differently.	 Tags	 use	 user-defined	metadata	
specific	 to	 the	 sample	 and	 experiment	while	 run	
groups	 organize	 runs	 into	 sets	 with	 similar	
processing	 parameters.	 Use	 the	 Trials	 tab	 to	
manage	these	features:	

12

Had13	Trial	0	

• Go	to	trials	tab	and	click	new	trial.	Settings:	
o Comment:	as	you	like,	for	example	'HAD13a,	initial	indexing'	
o Change	resolution	in	bottom	right	to	1.7.	This	resolution	is	only	used	in	aggregating	the	results,	

not	in	indexing	or	integrating	the	data.	
o In	the	central	window,	use	these	parameters:	

spotfinder { 
 filter { 
 d_max = 19 
 min_spot_size = 2 
 } 
} 
indexing { 
 known_symmetry { 
 space_group = C2221 
 unit_cell = 46.2, 103.0, 128.7, 90, 90, 90 
 } 
} 
prediction.d_max=19 

o Note	 prediction.d_max	 and	 spotfinder.filter.d_max	 can	 be	 removed	 if	 you	 created	 a	 static	 low	
resolution	mask	above.	
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o Choosing	 good	 spotfinding	 parameters	 is	 critical.	 In	 this	 case	 the	 gain	 is	 close	 to	 1	 so	
spotfinder.threshold.dispersion.gain	 is	 not	 modified	 (unlike	 for	 the	 CSPAD,	 see	 below).	 The	
DIALS	 tutorials	 online	 have	 further	 guidance	 for	 choosing	 these	 parameters	 using	
dials.image_viewer	(see	https://dials.github.io/documentation/tutorials).	

o If	 the	unit	 cell	 and	symmetry	 are	unknown,	 the	 indexing	parameters	 can	be	 omitted	 in	which	
case	 the	P1	will	 be	 used.	 Clustering	 tools	 such	 as	 those	 in	 Zeldin	 et	al.	 (2015)	 and	Gildea	 and	
Winter	(2018)	can	be	used	to	determine	the	unit	cell	and	symmetry.	

• Click	ok.	
• Click	new	block.	If	you	made	a	mask,	put	the	path	to	it	in	the	"Untrusted	pixel	mask"	box	(should	be	
$WORKING/averages/pixels.mask).	Click	ok.	

• Check	the	Active	Trial	box	

Additional	 run	groups	can	be	created	 as	needed,	and	can	be	added	or	 removed	 from	a	 trial	using	 the	
‘Select	blocks’	button.	Note,	by	default,	a	set	of	processing	results	will	be	created	for	each	image.	To	save	
on	 file	 system	 usage,	 these	 can	 be	 combined	 using	 output.composite_output=True	 in	 the	 trial	
parameters.	

Thermolysin	Trial	0	

For	the	CSPAD	thermolysin	data,	use	the	above	procedure	with	these	trial	parameters:	

spotfinder { 
 filter.min_spot_size=2 
 threshold.dispersion.gain=25 
 threshold.dispersion.global_threshold=100 
} 
indexing { 
 known_symmetry { 
 space_group = P6122 
 unit_cell = 92.9 92.9 130.4 90 90 120 
 } 
 refinement_protocol.d_min_start=1.7 
} 
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Here,	a	global	threshold	of	100	is	used	to	remove	
noisy	 pixels.	 Note,	 the	 LCLS	 version	 by	 default	
writes	 CBF	 versions	 of	 each	 indexed	 image	 to	
assist	debugging	the	raw	XTC	streams.	To	save	on	
file	 system	 usage,	 this	 can	 be	 disabled	 with	
dispatch.dump_indexed=False.	 Also,	 for	 LCLS	
processing,	composite_output=True	is	the	default.	

For	 the	 run	 group,	 use	 CxiDs1.0:Cspad.0	 for	 the	
detector	 address,	 580.119	 for	 DetZ,	 and	 provide	
the	path	to	the	untrusted	pixel	mask	if	you	created	
one.	

GUI	tab:	Jobs	
The	 jobs	 tab	displays	processing	 job	 information.	
A	 job	 consists	 of	 the	 output	 from	 a	 single	
processing	attempt,	 and	 is	associated	with	a	 trial	
number,	a	run	group	number,	and	a	run.	Click	the	
‘Auto-submit	 jobs`	 button.	 For	 local	 processing	
mode,	 each	 job	 not	 yet	 processed	 is	 ran	 in	
sequence.	For	LSF,	PBS,	or	other	queuing	systems,	

15

all	 jobs	 not	 yet	 processed	 are	 submitted	 to	 the	
queue.	As	new	data	arrives,	they	are	automatically	
submitted.	 Under	 the	 hood,	 the	 program	
cxi.mpi_submit	 is	 used	 to	 submit	 the	 jobs	 (see	
Brewster	et	al.	(2016)).	

Processing	 results	 are	 logged	 to	 the	 MySQL	
database,	 and	 are	 created	 as	 DIALS	 reflection	
tables	 and	 experiment	 files	 in	 the	 output	 folder	
$WORKING/results,	 as	 configured	 above.	The	 full	
set	of	commands	and	processing	parameters	used	
for	the	job	are	copied	to	this	folder,	in	job-specific	
subfolders,	for	archival	purposes.	

Jobs	 can	 be	 terminated,	 deleted,	 and	 restarted	
using	 the	 jobs	 tab.	 Deleting	 a	 job	 deletes	 all	 the	
results	from	the	MySQL	database	and	from	the	file	
system	in	the	results	folder.	

GUI	tab:	Run	Stats	
The	 Run	 Stats	 tab	 displays	 a	 variety	 of	 hit	 rate	
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information.	Select	a	 trial	 and	a	 run,	and	 the	plot	
will	 be	 generated.	 See	 figure	 1	 for	 a	 thermolysin	
example.	

Every	part	of	 the	hit	 rate	plot	 is	a	direct	 result	of	
issues	 encountered	 during	 SX	 experiments.	 We	
need	to	know	a	variety	of	information	at	a	glance,	
such	 as	 whether	 we	 are	 hitting	 the	 sample	 with	
the	 beam,	 are	 there	 crystals,	 are	 there	 multiple	
lattices,	can	we	index	them	(if	not,	why),	and	what	
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Figure	1:	Run	Stats	tab	showing	two	thermolysin	runs.	Note,	the	tutorial	uses	only	1/5th	of	run	13,	whereas	here	we	show	all	of	
run	13	plus	run	14.	Top:	XFEL	GUI.	Bottom	row:	zooms	of	three	sections	of	the	main	plot.	
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1The	background	ring	default	2θ	is	configured	for	kapton	tape	scatter	as	typically	seen	in	SX	experiments	used	with	drop	on	
tape	methods	(see	Fuller	2017),	and	as	such	the	default	ratio	of	1.0	is	too	low	for	injection	or	raster	experiments	without	a	
kapton	signal.	In	this	case	the	ratio	should	be	set	to	a	higher	values,	such	as	1.5	in	this	example,	where	the	thermolysin	was	
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is	 their	quality.	Further,	we	need	 the	 information	
updated	live	as	the	experiment	progressed,	but	we	
also	 need	 to	 be	 able	 to	 quickly	 compare	 runs	 to	
each	 other,	 even	 if	 they	 were	 collected	 days	
earlier.	To	this	end,	the	database	is	queried	and	hit	
rates	 displayed	 as	 you	 select	 specific	 runs,	 auto-
plot	 the	 last	 five	 runs,	 or	 plot	 the	 entire	
experiment	(all	runs	at	once).	

The	 top	 panel	 is	 split	 into	 four	 horizontal	 plots,	
labeled	 in	figure	1	as	A-D.	In	 the	hit	rate	plot	(A),	
every	 image	has	one	dot.	The	height	of	 the	dot	 is	
how	 many	 reflections	 were	 found	 during	
spotfinding	 on	 the	 image.	 The	 dot	 is	 blue	 if	 it	
indexed	and	gray	if	it	did	not.	

In	 the	 indexing	 plot	 (B),	 moving	 averages	 are	
computed	 for	 the	 solvent	 hit	 rate	 (green,	 right-
hand	Y-axis),	 the	indexing	rate	 (blue,	 left-hand	Y-
Axis)	 and	 the	multiple	 lattice	 rate	 (magenta,	 left-
hand	 Y-Axis).	 These	 rates	 are	 the	 percentage	 of	
the	 total	 number	 of	 shots	 in	 the	moving	window	
that	 contained	 solvent,	 indexed	 successfully,	 or	
had	multiple	lattices	present,	respectively.		

The	 solvent	 rate	 is	 computed	 by	 examining	 ratio	
of	the	water	ring	intensity	to	the	background.	This	
is	 done	 by	 specifying	 two	 2θ	 values	 in	 the	 run	
group,	a	high	 value	and	 a	 low	value.	The	defaults	
are	 22.8°	 for	 the	 water	 ring	 and	 12.5°	 for	 the	
background	 ring	 (note	 these	 are	 wavelength	
dependent	 following	Bragg’s	 law).	 Radial	 average	
values	are	computed	at	these	two	positions	and	if	
their	 ratio	 is	 higher	 than	 the	 default	 of	 1.0,	 then	
the	shot	is	considered	having	solvent.1	

The	diffraction	quality	plot	(C)	shows	one	dot	per	
image	 in	yellow,	where	 the	height	of	 the	dot	(left	
Y-axis)	 is	 the	 resolution	 the	 image	 diffracted	 to,	
using	a	mean	I/σ	ratio	cutoff	of	1.0	by	default.	The	
yellow	line	is	a	moving	average	of	the	percentage	
of	 indexed	 images	 that	 diffract	 to	 at	 least	 2.5Å	
(right	 Y-axis).	 This	 is	 the	 high-quality	 rate.	 Note	
that	 the	 resolution	 estimates	 are	 usually	
optimistic.	 After	 scaling	 and	 post-refinement,	
many	 reflections	 have	 reduced	 intensity	 due	 to	
partiality	 correction,	 since	 most	 reflections	 are	
partial.	Therefore	the	user	may	wish	to	adjust	the	
I/σ	ratio	cutoff	to	something	more	stringent	to	get	
a	more	realistic	resolution	estimate.	

18

The	statistics	 bar	 (D)	 shows	per	 run	 statistics.	 In	
the	case	of	thermolysin	run	13,	10312	shots	out	of	
41382	 images	 were	 considered	 hits,	 where	 a	 hit	
has	 at	 least	 40	 reflections.	 8971	 images	 indexed,	
6317	of	which	were	 high	 quality.	 44.0%	 of	 shots	
had	solvent,	and	24.9%	of	shots	had	crystals	(this	
is	the	hitrate).	21.7%	of	shots	indexed,	and	15.3%	
of	shots	indexed	to	2.5Å.	The	high	quality	rate	(not	
shown)	 would	 be	 (6317/8971)	 =	 70.4%	 for	 this	
run.	

Most	 of	 the	 parameters	 listed	 above,	 such	 as	 I/σ	
ratio	cutoff,	are	configurable	in	the	lower-left	hand	
corner	of	the	Run	Stats	tab.	The	two	image	display	
options,	‘Strongest	indexed	images’	and	‘Strongest	
images	 that	 didn’t	 index’	 open	 the	 DIALS	 image	
viewer	 and	 allow	users	 to	 look	at	 their	 best	 data	
and	 their	 most	 problematic	 data,	 respectively.	
(Note	 this	 feature	 is	 only	 available	 for	 the	 LCLS	
facility,	but	is	in	development	for	extant	facilities).	

Some	 tips	on	usage.	A	 flat	 line	 in	 the	hitrates	bar	
(A)	 indicates	 none	 of	 the	 shots	 contain	 Bragg	
diffraction.	This	could	mean	there	is	no	data	but	it	
could	 also	 mean	 the	 spot	 finding	 thresholds	 are	
too	stringent.	A	mix	of	blue	and	gray	dots	indicates	
many	 images	 are	 not	 indexing.	 The	 unit	 cell	
parameters	 or	 geometry	 might	 not	 be	 well	
optimized.	 Many	 gray	 dots	 consistently	 higher	
than	the	blue	dots	could	indicate	multiple	lattices,	
as	indexing	tends	to	fall	off	if	too	many	crystals	are	
hit	in	a	shot.	

Combining	A	and	B,	if	the	solvent	rate	is	zero	and	
the	hitrate	 is	 zero,	 then	 there	 is	no	solvent	 in	 the	
beam,	 indicating	the	jet	 is	missing	or	the	raster	is	
missing,	 etc.	 If	 the	 solvent	 rate	 is	 high	 but	 the	
number	of	spots	is	low,	the	crystals	concentration	
is	too	low.	If	the	solvent	rate	and	number	of	spots	
are	 both	 high	 but	 the	 indexing	 rate	 is	 low,	 the	
indexing	parameters	or	experimental	geometry	is	
wrong,	or	 the	spotfinding	parameters	are	picking	
up	noisy	reflections.	

The	 spotfinder	 should	 find	 few	 reflections	 on	
images	 considered	 misses,	 but	 poor	 spotfinding	
parameters	 can	 result	 in	 noisy	 mis-identified	
reflections,	 especially	 near	 a	 beam	 stop	 or	 other	
shadowing.	If	the	background	number	of	spots	per	
image	 is	 too	 high	 (around	 20-40),	 consider	 first	
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adjusting	 the	 spotfinding	 parameters	 and	 if	 that	
isn’t	 working,	 setting	
dispatch.hit_finder.minimum_number_of_refle
ctions	 to	 a	 number	 slightly	 higher	 than	 the	
background	 of	 your	 spotfinding	 results.	 This	
parameter	 will	 skip	 indexing	 obvious	 misses,	
saving	processing	time.	

GUI	tab:	Unit	Cell	
The	Unit	Cell	tab	uses	tag	sets	to	display	unit	cell	
distributions	in	2D	(figure	2	top)	and	1D	(figure	2	
middle	and	bottom).	Runs	must	already	be	tagged	
to	be	displayed	in	this	plot.	Select	a	trial,	then	
select	a	tag	or	tags	and	click	‘Add	selection’.	The	
tag	set	will	be	shown	in	the	Tag	sets	window	and	

Figure	2:	Unit	cell	plot	for	thermolysin.	Note,	this	is	for	all	the	thermolysin	data	from	(Brewster	et	al.,	2018).	

20

can	be	removed	from	the	plot	using	the	‘Remove	
selection’	button.	

A	 tag	 set	 is	 one	 or	 more	 collections	 of	 runs	 all	
tagged	with	tags	in	the	set.	The	set	can	be	a	union	
or	 an	 intersection,	 meaning	 display	 any	 images	
from	runs	tagged	with	any	of	these	tags	(union),	or	
display	only	 images	 from	runs	with	all	 these	 tags	
(intersection).	

For	example,	in	figure	3,	Runs	11-22	are	tagged	as	
‘Group1’,	and	runs	26-29	are	tagged	as	‘Group2’.	In	
this	case	it	can	be	seen	that	groups	1	and	2	do	not	
overlap	even	though	they	are	both	measurements	
of	 the	 same	 protein.	 In	 Brewster	 2018,	 the	
geometry	for	each	run	is	refined	separately,	which	



	

	 33	

ARTICLES 

Computational	Crystallography	Newsletter	(2019).	10,	22–39	

21

helps	 to	 correct	 this	 pattern	 by	 slightly	 adjusting	
the	 detector	 distance	 in	 a	 time-dependent	
refinement,	 causing	 these	 populations	 to	 better	
overlap	(not	shown).	

Geometry	refinement	and	re-indexing	
These	 instructions,	 shown	 here	 for	 the	 HAD13a	
data	but	generally	applicable,	are	similar	to	those	
given	 here:	
http://cci.lbl.gov/xfel/index.php/2017_dials.stills
_process.	 For	 the	 CSPAD	 data,	 follow	 the	
directions	 at	 https://github.com/phyy-
nx/dials_refinement_brewster2018/wiki,	 under	
the	 metrology	 refinement	 and	 metrology	

Figure	3:	Unit	cell	plot	for	two	groups	of	runs	for	thermolysin.	Note,	this	is	for	all	the	thermolysin	data	from	(Brewster	et	al.,	
2018).	
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evaluation	 sections	 (see	 also	 Brewster	 et	 al.	
(2016)	and	Brewster	et	al.	(2018)).	

Recall	 that	 the	 DIALS	 file	 formats	 are	 twofold:	 a	
set	 of	 experimental	models	 linked	 together	 in	 an	
experiment	 list	 and	 a	 list	 of	 reflections	 in	 a	
reflection	table.	An	experiment	represents	a	single	
diffraction	result	from	a	single	crystal,	and	for	still	
images	 includes	 a	 detector	 model	 (with	 position	
and	 orientation	 for	 each	 panel),	 a	 beam	 model	
(including	beam	direction	and	wavelength),	and	a	
crystal	model	(comprising	the	unit	cell	and	crystal	
orientation	 as	 well	 as	 mosaic	 parameters.	 In	 an	
experiment	 list	 file,	 each	 experiment	 can	 refer	 to	
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the	 same	 detector,	 so	 in	 the	 first	 step	 of	 geometry	 refinement,	 we	 create	 a	 list	 of	 experiments	 and	
reflections	such	that	each	experiment	points	to	the	same	detector	model.	We	will	then	jointly	refine	all	
the	models,	 such	 that	 all	 reflections	will	 inform	 the	position	 of	 the	 detector	while	 the	 position	 of	 the	
detector	will	affect	each	crystal	model	(Waterman	et	al.,	2016,	Brewster	et	al.,	2018).	

Also	note	that	the	octal	MPCCD	detector	at	SACLA	has	8	panels.	We	group	these	into	hierarchy	levels,	
where	 level	 0	 represents	 the	 detector	 as	 a	 whole,	 and	 level	 1	 represents	 each	 panel	 individually.	 A	
detector	 can	 have	 arbitrarily	 many	 hierarchy	 levels	 (for	 example,	 the	 CSPAD	 has	 4:	 the	 detector,	
quadrants,	2x1	modules	and	each	ASIC).	

• cd	$WORKING;	mkdir	-p	metrology/t000;	cd	metrology/t000	
• Combine	and	filter	experiments:	
o dials.combine_experiments	../../results/run1_run371999-0/000_rg001/out/*indexed.refl	
../../results/run1_run371999-0/000_rg001/out/*refined.expt	
reference_from_experiment.detector=0	

o This	 will	 create	 combined.refl	 (a	 set	 of	 indexed	 reflections	 from	 all	 indexed	 images)	 and	
combined.expt	(a	set	of	crystallographic	models	including	1	detector	model,	N	beam	models	and	N	
crystal	models,	where	N	is	the	number	of	indexed	image.	In	the	test	for	this	article,	there	were	92	
images	indexed).	

o cctbx.xfel.filter_experiments_by_rmsd	combined.*	
o This	will	 remove	 any	 images	 that	 have	 a	 particularly	 bad	RMSD,	where	RMSD	 is	 the	 root	mean	
squared	deviation	of	the	observations	from	the	predictions.	 In	this	case,	3	 images	were	removed	
with	this	command.	

• Refine	the	detector	as	a	block	(level	0):	
o dials.refine	refine_level0.phil	filtered.*	output.experiments=refined_level0.expt	
output.reflections=refined_level0.refl	

oWhere	the	file	refine_level0.phil	contains:	
refinement { 
 parameterisation { 
 auto_reduction { 
 min_nref_per_parameter = 3 
 action = fail fix *remove 
 } 
 beam { 
 fix = *all in_spindle_plane out_spindle_plane wavelength 
 } 
 detector { 
 fix_list = Tau 
 } 
 } 
 refinery { 
 engine = SimpleLBFGS LBFGScurvs GaussNewton LevMar *SparseLevMar 
 } 
 reflections { 
 outlier { 
 algorithm = null auto mcd tukey *sauter_poon 
 separate_experiments = False 
 separate_panels = True 
 } 
 } 
} 

o These	 parameters	 adjust	 the	 refiner	 for	 SX	 experiments	 as	 opposed	 to	 the	 defaults,	 which	 are	
geared	towards	traditional	rotation	experiments	at	synchrotrons.	Description	of	the	parameters:	
§ auto_reduction:	 for	 stills,	 there	 are	 few	 reflections	 per	 shot,	 and	 thus	 few	 reflections	 per	
parameter.	We	lower	the	cutoff	to	3	of	how	many	reflections	per	parameter	to	use	compared	to	
the	default	of	5	and	we	allow	experiments	with	too	few	reflections	to	be	removed.	
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§ We	 fix	 the	 beam	 so	 it	 does	 not	 refine.	 As	 the	 beam,	 the	 detector	 distance,	 and	 the	 unit	 cell	
dimensions	are	correlated,	one	parameter	must	be	used	as	a	ruler,	and	we	assume	the	beamline	
facility	has	correctly	calibrated	the	wavelength.	

§ We	fix	the	rotation	of	the	detector	around	its	normal	and	around	its	fast	and	slow	axes.	The	user	
should	 feel	 encouraged	 to	 try	 other	 refinement	 strategies	 including	 letting	 the	 detector	 tilt	
refine.	For	more,	see	Brewster	et	al.	(2018).	

§ We	 use	 the	 sparse	 LevMar	 refiner	 which	 uses	 sparse	 algebra	 to	 handle	 the	 large	 matrix	 of	
parameters	needed	for	refinement.	For	more,	see	Brewster	2018.	

§ We	 use	 the	 Sauter/Poon	 approach	 for	 outlier	 rejection	 (Sauter	 &	 Poon,	 2010).	 To	 determine	
outliers,	for	each	panel	we	consider	all	the	reflections	on	that	panel	across	all	experiments.		

o In	 the	 refinement	 summary	 you'll	 see	 the	 RMSD_X,	 RMSD_Y	 and	 RMSD_DeltaPsi	 will	 all	 have	
decreased.	

• Refine	the	individual	panels	(level	1):	
o dials.refine	refine_level1.phil	refined_level0.*	output.experiments=refined_level1.expt	
output.reflections=refined_level1.refl	

oWhere	the	file	refine_level1.phil	contains	(difference	from	level	0	highlighted	in	red):	
refinement { 
 parameterisation { 
 auto_reduction { 
 min_nref_per_parameter = 3 
 action = fail fix *remove 
 } 
 beam { 
 fix = *all in_spindle_plane out_spindle_plane wavelength 
 } 
 detector { 
 fix_list = Group1Tau1,Tau2,Tau3 
 hierarchy_level = 1 
 } 
 } 
 refinery { 
 engine = SimpleLBFGS LBFGScurvs GaussNewton LevMar *SparseLevMar 
 } 
 reflections { 
 outlier { 
 algorithm = null auto mcd tukey *sauter_poon 
 separate_experiments = False 
 separate_panels = True 
 } 
 } 
} 

	
o Note,	here	we	allow	 the	 panel	 to	 tilt	 around	 their	 normal	 axes	 (Tau1),	but	 still	 fix	 the	other	 tilt	
axes.	One	panel	has	to	be	fixed	to	limit	the	degrees	of	freedom,	hence	Group1Tau1	is	still	fixed	(see	
Brewster	et	al.	(2018)).		

o RMSDs	will	fall	even	further	after	this	refinement.	
• To	visualize	refinement	results:	
o cctbx.xfel.detector_residuals	hierarchy=1	plot_max=0.3	tag=Filtered	filtered.*	&	
o cctbx.xfel.detector_residuals	hierarchy=1	plot_max=0.3	tag=Level0	refined_level0.*	&	
o cctbx.xfel.detector_residuals	hierarchy=1	plot_max=0.3	tag=Level1	refined_level1.*	&	

From	the	text	output	of	cctbx.xfel.detector_residuals:	

Filtered: 
RMSD (microns) 116.314413579 
Overall radial RMSD (microns) 82.32334385 
Overall transverse RMSD (microns) 82.1700058634 
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Refined level 0: 
RMSD (microns) 66.0757037266 
Overall radial RMSD (microns) 48.6571169644 
Overall transverse RMSD (microns) 44.7044023747 
 
Refined level 1: 
RMSD (microns) 41.3719691901 
Overall radial RMSD (microns) 33.8076040347 
Overall transverse RMSD (microns) 23.8471328277 

Displacement	plots	 from	cctbx.xfel.detector_residuals	 for	 the	3	stages	are	in	 figure	4.	Top	row:	 filtered,	
middle	 row:	 refined	 level	 0,	 bottom	 row:	 refined	 level	 1.	 Each	 dot	 is	 a	 reflection.	 The	 color	 is	 the	
displacement	 between	 the	 observed	 and	 predicted	 reflection	 centroids.	 Left	 column:	 overall	
displacement.	Middle	column:	radial	displacement	(along	vector	from	the	reflection	to	the	beam	center).	
Right	column:	transverse	displacement	(along	vector	normal	to	beam	vector	and	radial	vector).	

Figure	4:	Positional	displacement	plots	for	the	octal	MPCCD	detector	at	SACLA	before	and	after	refinement.	
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How	much	did	the	detector	move?	We	can	use	the	
command	 cspad.detector_shifts	 filtered.expt	
filtered.refl	 refined_level1.expt	
refined_level1.refl	 to	 evaluate	 this	 (note,	 the	
legacy	name	cspad.detector_shifts	will	be	renamed	
at	 some	 point).	 In	 the	 ‘Detector	 shifts	 summary’	
table,	 level	 0	 moved	 116.8	 microns	 in	 XY	 and	
142.5	 in	 Z.	 Level	 1,	 where	 each	 panel	 moved	
individually,	 moved	 on	 average	 92.3+/-46.9	
microns	in	XY	and	-208.6+/-43.5	microns	in	Z.	

From	 these	 results	 we	 have	 the	 following	
observations:	

• The	 cross-hatching	 in	 the	 unrefined	 data	
usually	means	a	bad	beam	center.	

• Comparing	RMSDs	between	 the	unrefined	
and	refined	datasets	 is	not	completely	fair	
due	to	outlier	rejection.	See	Brewster	2018	
for	a	discussion.	

• After	 level	 1	 refinement,	 the	 upper	 right	
panel	gets	much	better.	

• During	 level	 0	 refinement,	 the	 detector	
moves	in	Z	+93.3	microns,	but	during	level	
1	refinement,	the	panels	moved	in	Z	back	-
208.6	 microns.	 This	 has	 been	 observed	
before	 (see	 Brewster	 et	 al.	 (2018)	 for	 a	
discussion).	

• The	 refined	 detector	 will	 have	 slightly	
different	 Z	 values	 for	 each	 panel,	 which	
might	 not	 be	 physically	 realistic.	 An	
alternative	 refinement	 approach	 would	
constrain	all	 the	panels	to	move	 the	same	
amount	 during	 level	 1	 refinement	 by	
adding	
detector.constraints.parameter=Dist.	

To	 prepare	 the	 new	 metrology	 for	 use	 by	
indexing:	

• mkdir	split;	cd	split	
• dials.split_experiments	../refined_level1*	
• cd	..	
• mv	split/split_00.expt	.	
• rm	-rf	split/	

	
This	takes	the	file	refined_level1.expt	and	removes	
all	 but	 one	 of	 the	 experiments,	 creating	
split_00.ext.	W	use	this	instead	of	the	full	set	from	
the	 combined	 experiments	 list.	 We	 can	 then	
reprocess	 the	 HAD13a	 data	 using	 the	 new	
metrology:	
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• Back	 in	 the	 GUI	 tab	 click	 on	 new	 trial,	

change	 the	 resolution	 to	 1.7,	 change	 the	
comment	 to	 'HAD13a,	 refined	metrology',	
and	click	OK	

• Click	new	block,	in	the	extra	phil	block	add	
input.reference_geometry=$WORKING/m
etrology/t000/split_00.expt	

• Click	 Active	 trial	 and	 the	 new	 job	will	 be	
submitted	

• Using	 the	 new	 metrology	 increased	 the	
number	of	images	indexed	from	93	to	114	

GUI	tab:	Merging	
As	stated	 in	 the	 Introduction,	 the	most	 important	
question	 to	 answer	 during	 an	 SX	 experiment	 is	
“Have	 I	 collected	 enough	 data?”	 Therefore,	
merging	 data	 rapidly	 to	 create	 datasets	 for	
scientists	 to	 examine	 is	 vital.	 In	 this	 tab,	 tag	 sets	
can	be	selected	 to	 list	 the	output	 folders	 for	each	
run	in	the	tag	set.	This	can	be	copied	into	merging	
scripts	 for	 merging	 independently	 from	 the	 GUI.	
Currently,	 merging	 directly	 from	 the	 GUI	 isn’t	
supported,	 but	 functionality	 for	 this	 will	 be	
implemented	by	Oct	2019.	For	details	on	merging	
the	 thermolysin	 data,	 see	
https://github.com/phyy-
nx/dials_refinement_brewster2018/wiki/Merging
.	

Integrating	the	GUI	into	new	facilities	
The	cctbx.xfel	GUI	can	be	run	standalone	using	SX	
data	 in	 most	 environments	 as	 currently	
implemented.	 For	 example,	 at	 a	 synchrotron,	 the	
user	 may	 want	 to	 monitor	 a	 folder	 where	 new	
rastering	runs	will	appear	as	new	directories	filled	
with	images.	Simply	configure	the	GUI	to	monitor	
this	 folder	 in	 the	 GUI	 setup	 screens.	 Facility-
specific	 features,	 including	 areas	where	additions	
can	be	made	trivially	are	listed	here:	

• DIALS	 natively	 supports	 raw	 data	 from	most	
facilities.	This	includes	XTC	(LCLS),	PAL	HDF5,	
SACLA	 Cheetah	 HDF5,	 NeXus	 (Eiger,	 EuXFEL	
and	 SwissFEL),	 and	 any	 single-image	 format,	
such	as	CBF	and	SMV,	currently	 supported	by	
the	dxtbx	data	modeling	library	that	 is	part	of	
cctbx	 (Parkhurst	et	al.,	2014).	Adding	support	
for	new	beamlines	is	straightforward.	

• New	 data	 monitors.	 At	 LCLS	 this	 is	 done	 by	
querying	 a	 webservice	 and	 at	 SACLA	 this	 is	
done	 by	 monitoring	 for	 a	 Cheetah	 status.txt	
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file.	Other	standalone	methods	include	looking	
for	 a	 certain	 number	 of	 files	 or	 watching	 for	
time	 stamps	 and/or	 file	 sizes	 to	 be	
unchanging.	 Implementing	 new	 monitors	
specific	to	a	facility	is	straightforward	and	can	
be	done	with	a	few	lines	of	Python.	

• Support	 for	 clustering	 systems.	 In	 addition	 to	
local	 mode,	 where	 simple	 Python	
multiprocessing	 is	 done	 on	 the	 current	 node,	
LSF	 and	 PBS	 queuing	 systems	 are	 available	
through	 the	 GUI.	 cxi.mpi_submit,	 the	 program	
used	 by	 the	 GUI	 to	 submit	 jobs,	 additionally	
supports	SLURM	and	custom	queuing	systems,	
such	 as	 the	 NESRC	 shifter	 technology,	 which	
will	 be	made	 available	 in	 the	GUI	 in	 the	 near	
feature.	

Please	 contact	 the	 authors	 if	 you	need	 additional	
support	in	any	of	these	areas.	

Conclusions	and	outlook	
The	cctbx.xfel	GUI	has	been	successfully	used	 live	
during	experiments	at	LCLS,	SACLA	and	PAL,	and	
will	 be	 made	 available	 at	 DLS,	 EuXFEL,	 and	
SwissFEL	in	the	coming	year.	The	GUI	can	and	has	
been	 used	 remotely	 through	 X-windows	
forwarding	or	virtual	systems	such	as	NoMachine	
or	VNC.	

It	 may	 be	 that	 facilities	 wish	 to	 integrate	
components	and	features	of	the	cctbx.xfel	GUI	into	
their	 pipelines	 without	 using	 the	 GUI	 itself,	 for	
example	the	MySQL	database	logging	and	the	Run	
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Stats	 graphics.	 These	 programs	 are	 all	 based	 on	
Python	 object-oriented	 design	 and	 have	
documented	APIs	that	can	be	merged	into	existing	
frameworks.	 Again,	 please	 contact	 the	 authors	 if	
there	is	interest.	

Finally,	 as	 XFELs	 and	 synchrotrons	move	 SX	 into	
the	 kilohertz	 and	 megahertz	 regimes,	 data	
processing	solutions	designed	from	the	ground	up	
to	 scale	 with	 the	 experimental	 size	 will	 be	 vital.	
The	 MySQL	 and	 multiprocessing	 approaches	
detailed	here	are	designed	exactly	with	the	scaling	
problems	 in	 mind.	 We	 hope	 to	 work	 with	
beamline	 scientists	 and	 facilities	 to	 incorporate	
these	 methods	 into	 their	 systems,	 ensuring	 the	
fast-feedback	 and	 monitoring	 needed	 during	
precious	 SX	 beamtime	 to	 enable	 answering	 that	
most	important	question	as	fast	as	possible,	“Have	
I	 collected	 enough	 data	 to	 answer	 my	 scientific	
questions?”	
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