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Why use a Bayesian approach?

* We often know how are measurements are related to our model...

* The Bayesian approach gives us the probability of our model once we
have made a measurement

* It is useful for dealing with cases where there are errors (uncertainties)
in the model specification (missing parts of model)

Introduction to Bayesian methods in
macromolecular crystallography

Basics of the Bayesian approach

* Working with probability distributions

* Prior probability distributions

* How do we go from distributions to the value of “x”?

* Bayesian view of making measurements

* Example: from “400 counts” to a probability distribution for the rate
* Bayes' rule

* Applying Bayes' rule

* Visualizing Bayes' rule

Marginalization: Nuisance variables and models for errors

* How marginalization works
* Repeated measurements with systematic error

Applying the Bayesian approach to any measurement
problem

Basics of the Bayesian approach
Working with probability distributions

Representing what we know about x as a probability distribution

p(x) tells us the relative probability of different values of x
1.0

0.8

p(x) does not tell us what x is...
...just the relative probability of each value of x

Prior probability distributions

What we know before making measurements

| am sure x is at least 2.5

Prior probability distributions

What we know before making measurements

All values of x are equally probable

Prior probability distributions

What we know before making measurements

x is less than about 2 or 3




Working with probability distributions
What is the “value” of x ?
(x)

We don't know exactly what “x” is... 1
but we can calculate a weighted estimate: 10
0.8
— — 0.6
(x)=dfxplx)dr g
2 0.4
0.2
Weight each by its relative
value of x probability p(x) O . 4

A = 1 / f p( X ) dx <= A is normalization factor

A Bayesian view of making measurements

A crystal is in diffracting position for a reflection
The beam and crystal are stable...

We measure 400 photons hitting the corresponding pixels in our
detector in 1 second

What is the probability that the rate of photons hitting these pixels is
actually less than 385 photons/sec?

A Bayesian view of making measurements

A crystal is in diffracting position for a reflection
The beam and crystal are stable...

We measure 400 photons hitting the corresponding pixels in our detector

in 1second : N =400
obs

A good guess for the actual rate k of photons hitting these pixels is 400:

k ~ 400

What is the probability that k is actually < 385 photons/sec?

What is p( k<385 | N,,_ = 400)

A Bayesian view of making measurements

Start with prior knowledge about which values of k are
probable: p (k)

Make measurement N _

For each possible value of parameter k ( 385...400...)

Calculate probability of observing N, _ if k were correct:
P(N,, | k)

Use Bayes'rule to get p(k) from p (k), N ,_and p(N , |k):

plk)ocp (k) p(N k)

A Bayesian view of making measurements

p(Nobs|k)

k=385

1.0 \ /

0.8

What is the probability that we
would measure N, counts if the

true rate were k?
k=400

0.6

0.4

p(Nobs|k)

0.2

0.0

200

Nobs

300 500

Bayes' rule

plk)ec p, (k) p(N k)

The probability that k is correct is proportional to...
the probability of k from our prior knowledge
multiplied by...

the probability that we would measure N _,_counts if the
true rate were k k=385 =400
4

0.8+
0.6
0.4+
T 0.2

0.0

‘Nobs|k)

0 100 200 300 400
Nobs

500
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Bayes' rule

p(k)mpo(\k)p(Nobslk)

The probability that k is correct

is proportional to...

the probability of k from our

prior knowledge (prior)

multiplied by...

the probability that we would
measure N, _ counts if the true

rate were k (likelihood)

(Nobs|k)

Prior

1.0

0.8+

0.6

0.4
& 0.2

0.0

Likelihood

k=§ /(2400

0

100 200 300 400 500
Nobs

Application of Bayes' rule
plk)oc p, (k) p(N k)

No prior knowledge: D, ( k ) =1

Poisson dist. for N

obs

p(N . |k)oce_| Ny —k[/(2K)

( large k)

k=€ /(:400
1.0

0.8
0.6
0.4
& 0.2

(Nobs|k)

0.0

Nobs

) 100 200 300 400 500

Application of Bayes' rule

Probability distribution
for k given our
measurement N_,_=400:

Probability that k < 385:

P =22%

p(k)oce"N“bs_k I*/(2k)

385
p(k<385)=A["" p(k)dk

A=11"_ p(k)dk

Visualizing Bayes' rule

P(x|y ) e P (X) Py x)

Where does Bayes' rule come
from?

Using a graphical view to show
how p(x|y) is related to p(y|x)

1.0 k=38 =400
0.8
= 06
Q
g 0.4
T 02
00 100 200 300 460 500
Nobs
Visualizing Bayes' rule: p(x yobs) ocpo(x) p( yobs| x) Visualizing Bayes' rule: p(y|x) and p(x|y)

p(x) and p(y)

p(x)dx= B p(x) dx is the fraction of all
drops from x to x+dx

— | e

4 ¥ U A = ald) Fald) )

o/ ~ * o/ 4

Tt 9 GRS ST ) l
y+dy

(03 D p(y)dy=C
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4 =) D Il ) e ) e ) |

M | 1 e e e
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JJ J JJB JJ g _,J J JJ J JA .

3 ¥ U A = ld) o edd) )

A is all the drops in the box
X X+dx B is the drops in the vertical strip

C is drops in horizontal strip
D is the intersection of B and C

p(x)dx=B
— | e
[ ) e ) ) e
* £* J o o/ J/
o l RN S e R ) l
y+dy
C D nr(ylx)dy=D/B
y ————— po———d
4 ¥ |J U
J J J J J J
9 ¢ I ¢ J o L 2y
AFeASU - U s )
,JJJ"BJJJJ"J,JJJAJJ
g =y B ) el ) ) e )
X x+dx
Considering only drops from x to x+dx, p(y|x)dy is the fraction of drops
from y to y+dy

p(y)dy=C
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Visualizing Bayes' rule: p(x,y)

Visualizing Bayes' rule: p(x,y)

p(x)dx=B [ D ]=[DB] [B ] p(x)dx=B [ D J]=[DIC][C]
) = / p(x,y)dydx=p(y|x)dy p(x)dx — = /p(x,y)dydx=p(XIy)dx p(y)dy
J /0 P P e ) Zd) .~ FINRa |
JJlJJJJJ_)JJJJJ_}J l JJ < JJJJJJ £e JJJJ
y+dy y+dy
D p(ylx)dy=D/B p(y)dy=C (03 D
y y
IJ S Y JJT 2 ) P(ij)CJiX=D/Ci‘ : =)
J g J J G J J ) oJ J) g J J 5 J J) J g J J G J J oJ g J Jj )
BE Sl Al ol Sl ) el ) 2l i =g 4 =Y
JB,JJ,JJ,JJ,AJJ JJJBJJJ,JJ,JJJAJJ
e R P e ) 7 ) W= 4~
X x+dx x x+dx p(x)dx=B
p(x,y)dxdy is the fraction of all drops inside the box p(x,y)dxdy is the fraction of all drops inside the box
from x to x+dx and y to y+dy from x to x+dx and y to y+dy
D=D/B*B Visualizing Bayes' rule An identity we will need now and later....
D=D/C*C p(x)dx=B p(x‘y)gxgy=p(ylx) p(X)ngV
= p(x,y)dxdy=p(xly) p(y)dxdy p(y):‘f p(y|x)p(x)dx
p(x)dx=B
W Sl S ald) Fald) ) — |
y+dy l‘J’J‘J‘J‘l ¢ IR ) ) J
D p(ylx)dy=D/B p(y)dy=C L Y b Yo Yo 3 2l
y y+dy
W00 0050]T C D pixidy=DIB p(y)dy=C
% JJJIJJJJJJJJJ y J I JJJJJJ J
J J J J J J J J _J L J J J L J Jl o J) 4 o g o/ )
JBJJ-/JJJ;JJJAJJ J JJJJJJ J
h Y80 20 <28 <0 JJJ JBJJJIJJJJ ,AJJ
? IR ) J
X x+dx
X Xx+dx
Visualizing Bayes' rule Bayes' rule as a systematic way to evaluate truth-tables
p(x)dx
— e
p(x,y) written two ways P(xly)P(J’):P(J/|X)P(X) ) oy S 9§
rearrangement...  p(x|y)=p(y|x)p(x)/ p(y) » " U T T T Vg Uy l
y+dy
C D p(y)dy
y —
An identity p(y):fp(ylx)p(x)dx Y e
J J g J g J J N J J J g J Jj )
24 WP s ) e Zad) =)
Substitution...Bayes' rule: JUBLT VLT LT JA D
J 4] L J J) J J J J)
p(x[¥)=p(y|x)p(x)I[ p(ylx)p(x)dx
X x+dx

p(x) dx is the fraction of all drops from x to x+dx
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Bayes' rule as a systematic way to evaluate truth-tables

We toss a coin twice and get at least one “heads”.
What is the probability that the first toss was a “head?”

Bayes' rule as a systematic way to evaluate truth-tables

We toss a coin twice and get at least one “heads”.
What is the probability that the first toss was a “head?”

Second toss H Secondtoss T Second Second FS=head on first or second toss
. fossH toss H= heads first toss T= tails first toss
First H H
F H toss H T Bayes' rule:
irst toss H
HH HT p(H)=A p (H) p(FS|H)
First T T A=11p,H) p(FSIH) + p (T) p(FS|T) ]
EI(.)SS H T p,(H)=1/2
p(FS|H)= 1
p(FS|T)=1/2
Firsttoss T T H T T A=1/[1/2+1/2*1/2] =4/3
p(H)= 4/3 * 1/2 = 2/3
Marginalization
Quick Review of Bayes' rule
What if the observations depend on z as well as x ?
(Maybe z is model error)
P(x[ ) e p () p(y 4] %)
p( yobs|x) What we want to use in Bayes' rule

p( x| yobs) Probability of x given our observations
po (x) What we knew beforehand about x

X Probability of measuring these
p( y0b5| ) observations if x were the correct value

P(Yossl¥)= ] p (sl 2) plz)dz

“Integrate over the nuisance variable z, weighting by p(z)”

Marginalization
y.,.=observations

p( yobs): f p (yobs | z) p (z)dz Identity we saw earlier

The whole equation

le)dZ can be for a
particular value of x

P(Vors )= [ D(yosslz, x) p(

If z does not
depend on x,

obs| X )= obs|Z, X z dZ
P(Yors|x) fp(yb| )p(z) p(2)=p(z|x)

“Integrate over the nuisance variable z, weighting by p(z)”

Marginalization with Bayes' rule
We want to get p(x) using p(y,, |x) in Bayes' rule...

Y., i an experimental measurement of y

(Vow—y)120°

P(Yopsly)oce”

y depends on x and z (perhaps z is model error)
y=y(z,x)

...then we can integrate over z to get p(y,, |x):

PVl )= [ P (ol (2, %)) p(2)de
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Repeated measurements with systematic error

We want to know on average how many drops Davg of rain hita
surface per 100 cm? per minute.

The rain does not fall uniformly: D(x)=D__+E(x) where the SD of

avg

E(x) is e. However we only sample one place

We count the drops N falling in 1 minute into a fixed bucket with
top area of 100 cm? m times (N,, N,...) with a mean of n.

What is the weighted mean estimate <D, >? What is the

uncertainty in <D_, >7 J 6 90 96 I3
J J J J) J J) J 4] J J)
v J o J J
) J| G ¢ J o J o
J J J J) < J) =4 t) J J
~ J ol ~J )

Repeated measurements with systematic error

We want to get p(Dan) using p(Nobs|Davg) in Bayes' rule...but the
rate into our bucket D depends on D, and E:
D=D,, +E

—E*2¢°

p(E)xe

N_,.is the number of drops we count with SD of n'2:

p( N b, | D E )m e_(Nohx_(Duvg"'E ))2/252

avg ’
Including all m measurements N, N,...

PN, N,..|D, , E)oce ZWN(Dut B

avg’

=%(N= (Dot E)) 125"
From p(Nl,Nz...|Davg,E)oce 4
previous _E el
slide p(E)oce 7¢

We have p(N,,N,...|D,,.E). We want p(N,N,...|D,, ). Integrate over
the nuisance variable E:

P(NLN,. Do) =[ p(N |, Ny...| Doy, E) p(E) dE

Yielding (where n is the mean value of N: <N_,N,...>)
—(D,,,—n)12("+5" I m)
PN, N, |D, ) oce P

Now we have p(N1,N2...|Dan) and we are ready to apply Bayes' rule

We have the probability of the observations given Davg,

—(D = 12(e 45" m
(N, N,..|D,,)oce” P 12s1m

Bayes' rule gives us the probability of D_ _ given the observations:

avg

—(D,e—n)12( +5%m)

avg) e

p(Davg|N1’N2"')OCp?(D

If the prior p (D,,,) is uniform:

p(Davg| N1 ,Nz...)Oce_(Dﬂvz_”)Z/Z(€2+s2/m)

an

<Davg>:n:<N> o’=e’+5 I m

Summary: How to apply a Bayesian analysis to
any measurement problem

1. Write down what you really want to know: p(D,, 9)

2. Write down prior knowledge: p (D, J=1

3. Write down how the true value of the thing you are
measuring depends on what you really want to know and
any other variables: D=Davg+E

4. Write down probability distributions for errors in
measurement and for the variables you don't know:

p(N,,.|D) and p(E)

How to apply a Bayesian analysis of any
measurement problem

5. Use 3&4 to write probability distribution for
measurements given values of what you want to know and
of nuisance variables: p(N, N,...|D,,,E)

6. Integrate over the nuisance variables (E), weighted by
their probability distributions p(E) to get probability of
measurements given what you want to know:
pP(N,N,..ID,,)

7. Apply Bayes' rule to get the probability distribution for
what you want to know, given the measurements:
p(D,,JIN,N,.)=p,D,,) p(N, N,..ID,,)
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Applications of the Bayesian approach in
macromolecular crystallography

* Correlated MIR phasing (errors due to non-isomorphism are correlated
among heavy-atom derivatives)

* Correlated MAD phasing (errors in heavy-atom model are correlated
among wavelengths)

* Bayesian difference refinement (errors in model of macromolecular
structure correlated between two structures)

* Macromolecular refinement (phase unknown and model errors present)

Tutorials

* Working through simple Bayesian exercises from
handout in a group

* PHENIX demo and discussion

* Density modification and model-building theory
and discussion

* Discussion of individual challenging examples and
questions from students
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Exercise 1

1. Draw a probability distribution that means “I know that x
is between 0 and 1.” Draw another that means “l know that
X is within 0.01 of being an integer.”

Exercise 2

2a. A measurement system consists of a biased ruler that
systematically reads 1 mm too high and that can be read
with a precision of +/-0.5 mm. Suppose we measure the
diameter of a pencil that is actually 2.0 mm across. Draw a
probability distribution for these measurements.

2b. The Gaussian function y = exp -[ (x-x )? /2s’] has a
maximum at x, and a SD of s. Write an equation p(obs|D)
for the probability distribution you have drawn in 2a.

Exercise 3

Consider the example in Exercise 2 (a ruler that always
reads 1 mm too high and has an uncertainty in
measurement of 0.5 mm). We now have a measurement
ad=3.0mm

Suppose we know in advance that the diameter of the
pencil is at least 1.8 mm.

a. Draw this a priori probability distribution

b. Use Bayes' rule to write an expression for the probability
distribution of the diameter D given a measurement d=3.0
mm made with our biased ruler.

c. Draw this probability distribution for D. Approximately
what is the mean value of D?

Exercise 4 Applying the Bayesian approach to a
measurement problem without nuisance variables

You make 10 measurements Wj of the weight of a ball bearing.

You think your scale is unbiased and has a Gaussian
distribution of errors with SD of s. You are willing to believe
any value of the weight.

a. What is your probability distribution for the weight after
making these 10 measurements (go through steps 1-7 in “How
to apply a Bayesian analysis to any measurement problem,
with no nuisance variables)? What is your best estimate of the
weight <x>?

b. Now suppose you are absolutely certain that this ball
bearing is heavier than a NBS calibrated standard with weight
M_g. Write down your a priori probability distribution for W.
Now incorporate this into your expression for the probability
of W given your measurements using Bayes' rule. How would
you have deal with this information if you did not use a
Bayesian approach?

Exercise 5 Applying the Bayesian approach to a
measurement problem with nuisance variables

Suppose you expect that the scale used in the previous
exercise as biased, reading systematically too low or too high.
You don't know which, but you think this bias has a Gaussian
distribution with a standard deviation of D. You have no prior
knowledge about the weight.

Now what is your probability distribution for the weight after
making the same 10 measurements made in the previous
exercise? Don't bother to evaluate the integrals, just write
them down.
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P(x)

Answer to Exercise 1

1. Draw a probability distribution that means “I know that x is between 0 and 1.” Draw
another that means “I know that x is within 0.01 of being an integer.”

1.0
0.8
0.6
0.4
0.2
0.0
1 2 3 4 5
x
1.0
0.8
0.6
B
2 0.41
0.2
0.0

Answer to Exercise 2

2a. A ement system ists of a bi  ruler that sy lly reads 1 mm too
high and that can be read with a precision of +/-0.5 mm. Suppose we measure the diameter
of a pencil that is actually 2.0 mm across. Draw a probability distribution for these
measurements.

2b. The Gaussian function y = exp -[ (x-x )? /2s?] has a maximum at x, and a SD of s. Write an
equation p(obs|D) for the probability distribution you have drawn in 2a.

1.0
0.8
0.6+
0.4+
0.24

0.0 T T T
0 1 2 3 4 5

d (mm)

P(d |D)oce_(dobs‘(D+1.0))2/2U2
obs

p(d)

Answer to Exercise 3

Consider the example in Exercise 2 (a ruler that
always reads 1 mm too high and has an
uncertainty in measurement of 0.5 mm). We now
have a measurement d=3.0mm

Suppose we know in advance that the diameter of
the pencil is greater than 1.8 mm.

1.0
a. Draw this a priori probability distribution gg:
T 0.4
0.2
b. Use Bayes' rule to write an expression for the 0.0 0 1 2 3 4 5
probability distribution of the diameter D given a
measurement d=3.0 mm made with our biased x
ruler.
5 1.0 g
(D|d )OC (D)e_(d"b"_(DH'O)) 0.8
p obs p 0 S 0.6
S 0.4
Q
S 0.24
c. Draw this probability distribution for D. 0.0 . A
Approximately what is the mean value of D? 0 1 2 3 4 5

Answer to Exercise 4

You make 10 measurements W, of the weight of a ball bearing. You think your scale is
unbiased and has a Gaussian distribution of errors with SD of s. You are willing to believe any
value of the weight.

a. What is your probability distribution for the weight after making these 10 ?
(go through steps 1-7 in “How to apply a Bayesian analysis to any measurement problem, with
no nuisance variables) What is your best estimate of the weight <x>?

1. Write down what you really want to know: p(W)

2. Write down prior knowledge: p (W)=1

3. Write down how the true value of the thing you are
measuring depends on what you really want to know and any
other variables: W=W (no nuisance variables)

Answer to Exercise 4, continuation 1

4. Write down probability distributions for errors in
measurement and for the variables you don‘t know:

p( Wobsl W)OC e—(Wm-_W)Z/ZO'Z

5. Use 3&4 to write probability distribution for measurements
given values of what you want to know and of nuisance
variables:

S (w-w)l2e

pW W, |W)ce =

6. Integrate over the nuisance variables (E)... NONE

Answer to Exercise 4, continuation 2

7. Apply Bayes' rule to get the probability distribution for what
you want to know, given the measurements:

P Wy e =7

What is your best estimate of the weight <x>?

Best estimate of weight is the weighted mean value

Wy=[wp(W|W,, W,..)dw
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Answer to Exercise 4, continuation 3

b. Now suppose you are absolutely certain that this ball bearing is heavier than a NBS calibrated
standard with weight M g. Write down your a priori probability distribution for W. Now

incorporate this into your expression for the probability of W given your measurements using
Bayes' rule. How would you have deal with this information if you did not use a Bayesian
approach?

1. Write down what you really want to know: p(W)
2. Write down prior knowledge: p (W)= {0, W<M g; 1, W> M g}

3. Write down how the true value of the thing you are measuring
depends on what you really want to know and any other
variables: W=W (no nuisance variables)

Answer to Exercise 4, continuation 4

4. Write down probability distributions for errors in
measurement and for the variables you don't know:

p( Wobs| W)OC e—(Wobs—W)2/2g-z

5. Use 3&4 to write probability distribution for measurements
given values of what you want to know and of nuisance
variables:

pW W, |W)ce

6. Integrate over the nuisance variables (E)... NONE

2 W =w)i2o’

Answer to Exercise 4, continuation 5

7. Apply Bayes'rule to get the probability distribution for what
you want to know, given the measurements:

-2 (W=wyi2e®

pWIW  W,..)cp,(W)e

What is your best estimate of the weight <x>?

Best estimate of weight is the weighted mean value. The prior
is zero below M_g so we integrate from M g to infinity

<W>=ang W p(W|\W,,W,.)dWw

Answer to Exercise 5

Suppose you expect that the scale used in the previous exercise as biased, reading
systematically too low or too high. You don't know which, but you think this bias has a Gaussian
distribution with a standard deviation of D. You have no prior knowledge about the weight.

Now what is your probability distribution for the weight after making the same 10 measurements
made in the previous exercise? Don't bother to evaluate the integrals, just write them down.

1. Write down what you really want to know: p(W)

2. Write down prior knowledge: p (W)=1

3. Write down how the true value of the thing you are measuring
depends on what you really want to know and any other
variables: W=W+E

Answer to Exercise 5, continuation 1

4. Write down probability distributions for errors in
measurement and for the variables you don‘t know:

p(W |W E)d:e_(Wubx_(W+E))2/20-2
obs ’

p(E)Oce_EZ/ZDZ

5. Use 3&4 to write probability distribution for measurements
given values of what you want to know and of nuisance
variables:

p(W W, |W)ce

2 (W —(W+E)120°

Answer to Exercise 5, continuation 2

6.Integrate over the nuisance variables (E). (We won't
bother to evaluate the integral)

P(W1,W2...|W)oc_[ e_z"(W"_(WJrE))’Z" o ED
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Answer to Exercise 5, continuation 3

7. Apply Bayes'rule to get the probability distribution for what
you want to know, given the measurements:

p(W\wW, W, ...)ocf e_z"(W‘_(W+E))/20 e E R

What is your best estimate of the weight <x>?

Best estimate of weight is the weighted mean value

Wy=[wpWw\w, w,..)aw
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