

RESOLVE model-building

Tom Terwilliger Los Alamos National Laboratory

RESOLVE model-building at moderate resolution

- •FFT-based identification of helices and strands
- •Extension with tripeptide libraries
- •Probabilistic sequence alignment
- •Automatic molecular assembly

Placement of helical and extended templates

- Identify locations with FFT-based convolution search
- •Maximize CC of template with map
- •Superimpose each fragment in corresponding library (helix, sheet) on template
- •Identify longest segment in good density, score = <density>*sqrt(Natoms)

Initial model-building – strand fragments

Chain extension by placement of tripeptide fragments

•Look-ahead scoring: find fragment that can itself be optimally extended

•C-terminal extension. Start at C-terminus of protein

•Each of 10000 fragments: superimpose CA C O on same atoms of last residue in chain (extending by 2 residues): pick best 10

•Each of best 10: extend again by 2 residues and pick best 1; score for 2-residue extension= best <density> for 4-residue extension based on this 2-residue extension

•N-terminal: same, but going in opposite direction

Chain extension (result: many overlapping fragments)

Assembly of main-chain

•Choose highest-scoring fragment

- •Test all overlapping fragments as possible extensions
- •Choose one that maximizes score when put together with current fragment
- •When current fragment cannot be extended: remove all overlapping fragments, choose best remaining one, and repeat

Main-chain as a series of fragments (choosing the best fragment at each location)

Side-chain rotamer templates

Define side-chain orientation based on N CA C of main-chainUp to 40 rotamers per side chain

•Create template from average calculated electron density based on all occurrences of rotamer in 637 unique proteins

•Total of 400 side-chain templates

Scoring side-chain templates at each position

- •Identify side-chain orientation from N CA C of main-chain
- •Get CC of template with density -> Z-score
- •(Compare CC with mean, SD of all side chain density with this template)
- •P(this side-chain/rotamer is correct)= Po(this side-chain/rotamer)*P(Z)

Evaluating which side-chain template is best matched by a pattern of density: A good match to a glycine means more than a good match to an alanine

Side-chain template matching to identify sequence alignment to map (IF5A data) Relative probability for each amino acid at each position (Correct amino acids in bold)

#	G	Α	S	V	I	L	Μ	С	F	Y	К	R	W	Н	Е	D	Q	Ν	Ρ	т
1	6	5	4	18	18	6	1	1	1	2	6	2	2	1	9	6	1	0	1	4
2	4	11	14	37	5	2	0	2	0	0	2	3	0	0	1	2	0	0	0	6
3	11	23	5	12	5	3	2	0	1	3	7	3	1	0	5	3	2	0	2	2
4	7	9	6	16	8	5	2	0	1	3	8	4	1	0	7	6	2	0	3	4
5	31	7	3	7	4	2	1	0	1	3	5	4	1	0	6	2	2	0	11	1
6	1	3	3	41	14	8	0	0	0	0	2	1	0	0	2	4	0	0	1	9
7	0	0	0	0	0	0	0	0	15	63	1	0	17	1	0	0	0	0	0	0
8	2	3	6	23	10	6	2	1	0	1	4	3	0	0	5	16	1	0	1	6
9	96	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Addition of side-chains to fixed main-chain positions

Accuracy of side-chain identification probabilities

Accuracy of sequence alignment probabilities

Model-building vs resolution for nearly-perfect data (IF5A)

Automated NCS identification with RESOLVE

Expand heavy-atom sites within radius R of origin
Make list of all pairs of sites, sorted by distance between sites d

- •Choose any 3 HA sites a triangle ABC
- •Find all other sets of 3 HA sites that form the same triangle
 - If some exist (DEF) -> this might correspond to NCS
 - •If none...try another set of 3 HA sites

•Testing NCS: Sites ABC match sites DEF

•Does density near ABC match (after rotation/translation) density near DEF?

Automated NCS identification with RESOLVE

Structure	Number of sites found by SOLVE	NCS	NCS (found from heavy-atom sites)	NCS (electron- density map)
NDP Kinase	9	3-fold	3-fold	3-fold
Hypothetical	16	2-fold	2-fold	2-fold
Red Fluorescent Protein	26	4 copies	4 copies	4 copies
AEP Transaminase	66	6 copies	6 copies	6 copies
Formate dehydrogenase	12	2-fold	2-fold*	2-fold
Gene 5 protein	2	None	None	None
Armadillo repeat from β- catenin	15	None	2 copies	None
Dehalogenase	13	None	3 copies	None
Initiation Factor 5A	4	None	None	None

Molecular assembly in RESOLVE

List all chains assigned to sequence (anywhere in space)

A possible arrangement consists of:

Each chain assigned to a moleculeEach chain assigned to a symmetry-related position

Score a possible arrangement based on:

 Plausibility of gap distances between position of C of residue i and N of residue j

•RMS distance of chains from molecular center

RMSD of NCS symmetry for corresponding atoms

•Try a reasonable starting arrangement (each chain assigned to the center of an NCS copy)

•Adjust by moving chains and groups of chains randomly from one symmetryrelated position to another. Choose based on score.

Molecular assembly in RESOLVE

Summary of molecular assembly results (NDP-kinase)

NCS copies: 3

Molecule: 1 Chain: 1 Score for molecular location: 0.83

					Link	Mol	NCS	NCS	
Frag	Start	: End	Ν	Overlap	Length	Radius	RMSD	< N >	Score
1	17	64	48	0	6.6	4.5	0.7	31.0	51.0
2	69	74	6	0	24.5	19.6	0.5	3.0	3.7
3	115	137	23	0	14.4	5.2	0.8	20.5	22.7
4	166	186	21	0		5.2	0.6	9.5	22.4
Resid	ues pl	Laced	for	this mol	ecule:	98			
Total r Residue Total r	esidues s built esidues	placed without built:	d: 30 ut sid : 374	09 of 588 de chains: 4 or 63%	or 52% 65				

Initial automated structure solution, density modification, NCS-identification, and model-building

Structure	Res. (Å)	% of main- chain built	% of side chains built
Granulocyte stimulating factor (Rozwarski et al., 1996)	3.5	50%	0%
β-catenin (Huber et al., 1997)	2.7	81%	62%
Gene 5 protein	2.6	61%	11%
NDP Kinase (Pédelacq et al, 2002)	2.6	56%	37%
Hypothetical (P. aerophilum ORF, NCBI accession number AAL64711)	2.6	79%	75%
2-Aminoethylphosphonate (AEP) Transaminase (Chen et al., 2000)	2.6	85%	81%
Red Fluorescent Protein (Yarbrough et al, 2001)	2.5	88%	88%
Initiation factor 5A (Peat et al., 1998)	2.1	84%	84%

The PHENIX Project

Phenix

Lawrence Berkeley Laboratory

