Phenix

RESOLVE model-building

Tom Terwilliger
Los Alamos National Laboratory

- Los Alamos

㽧巤 UNIVERSITY OF CAMBRIDGE

RESOLVE model-building at moderate resolution

-FFT-based identification of helices and strands
-Extension with tripeptide libraries
-Probabilistic sequence alignment
-Automatic molecular assembly

Placement of helical and extended templates

-Identify locations with FFT-based convolution search
-Maximize CC of template with map

- Superimpose each fragment in corresponding library (helix,sheet) on template
- Identify longest segment in good density, score = <density>*sqrt(Natoms)

Initial model-building - strand fragments

Chain extension by placement of tripeptide fragments

-Look-ahead scoring: find fragment that can itself be optimally extended
-C-terminal extension. Start at C-terminus of protein
-Each of 10000 fragments: superimpose CA C O on same atoms of last residue in chain (extending by 2 residues): pick best 10
-Each of best 10: extend again by 2 residues and pick best 1 ; score for 2 -residue extension= best <density> for 4 -residue extension based on this 2 -residue extension

- N-terminal: same, but going in opposite direction

Chain extension

(result: many overlapping fragments)

Assembly of main-chain

-Choose highest-scoring fragment
-Test all overlapping fragments as possible extensions
-Choose one that maximizes score when put together with current fragment
-When current fragment cannot be extended: remove all overlapping fragments, choose best remaining one, and repeat

Main-chain as a series of fragments

 (choosing the best fragment at each location)

Side-chain rotamer templates

-Define side-chain orientation based on N CA C of main-chain

- Up to 40 rotamers per side chain
-Create template from average calculated electron density based on all occurrences of rotamer in 637 unique proteins
-Total of 400 side-chain templates

Scoring side-chain templates at each position

-Identify side-chain orientation from N CA C of main-chain
-Get CC of template with density -> Z-score
-(Compare CC with mean, SD of all side chain density with this template)

- $P($ this side-chain $/$ rotamer is correct $)=\mathrm{Po}$ (this side-chain $/$ rotamer) ${ }^{*} \mathrm{P}(\mathrm{Z})$

Evaluating which side-chain template is best matched by a pattern of density: A good match to a glycine means more than a good match to an alanine

Random side-chain : template correlations

Side-chain template matching to identify sequence alignment to map (IF5A data) Relative probability for each amino acid at each position (Correct amino acids in bold)

$\#$	\mathbf{G}	\mathbf{A}	\mathbf{S}	\mathbf{V}	\mathbf{I}	\mathbf{L}	\mathbf{M}	\mathbf{C}	\mathbf{F}	\mathbf{Y}	\mathbf{K}	\mathbf{R}	\mathbf{W}	\mathbf{H}	\mathbf{E}	\mathbf{D}	\mathbf{Q}	\mathbf{N}	\mathbf{P}	\mathbf{T}
1	6	5	4	18	18	6	1	1	1	2	6	2	2	1	9	6	1	0	1	4
2	4	11	14	37	5	2	0	2	0	0	2	3	0	0	1	2	0	0	0	6
3	11	23	5	12	5	3	2	0	1	3	7	3	1	0	5	3	2	0	2	2
4	7	9	6	16	8	5	2	0	1	3	8	4	1	0	7	6	2	0	3	4
5	31	7	3	7	4	2	1	0	1	3	5	4	1	0	6	2	2	0	11	1
6	1	3	3	41	14	8	0	0	0	0	2	1	0	0	2	4	0	0	1	9
7	0	0	0	0	0	0	0	0	15	63	1	0	17	1	0	0	0	0	0	0
8	2	3	6	23	10	6	2	1	0	1	4	3	0	0	5	16	1	0	1	6
9	96	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Addition of side-chains to fixed main-chain positions

Accuracy of side-chain identification probabilities

Accuracy of sequence alignment probabilities

Model-building vs resolution for nearly-perfect data (IF5A)

Automated NCS identification with RESOLVE

-Expand heavy-atom sites within radius R of origin -Make list of all pairs of sites, sorted by distance between sites d
-Choose any 3 HA sites - a triangle ABC
-Find all other sets of 3 HA sites that form the same triangle -If some exist (DEF) -> this might correspond to NCS -If none...try another set of 3 HA sites
-Testing NCS: Sites ABC match sites DEF
-Does density near ABC match (after rotation/translation)
$E \not D$ density near DEF?

Automated NCS identification with RESOLVE

Structure	Number of sites found by SOLVE	NCS	NCS (found from heavy-atom sites)	NCS (electron- density map)
NDP Kinase	9	3-fold	3-fold	3-fold
Hypothetical	16	2-fold	2-fold	2-fold
Red Fluorescent Protein	26	4 copies	4 copies	4 copies
AEP Transaminase	66	6 copies	6 copies	6 copies
Formate dehydrogenase	12	2-fold	2-fold*	2-fold
Gene 5 protein	2	None	None	None
Armadillo repeat from β -	15	None	2 copies	None
catenin	13	None	3 copies	None
Dehalogenase	4	None	None	None
Initiation Factor 5A	13			

Molecular assembly in RESOLVE

List all chains assigned to sequence (anywhere in space)
A possible arrangement consists of:
-Each chain assigned to a molecule
-Each chain assigned to a symmetry-related position

Score a possible arrangement based on:
-Plausibility of gap distances between position of C of residue i and N of residue j
-RMS distance of chains from molecular center
-RMSD of NCS symmetry for corresponding atoms
-Try a reasonable starting arrangement (each chain assigned to the center of an NCS copy)
-Adjust by moving chains and groups of chains randomly from one symmetryrelated position to another. Choose based on score.

Molecular assembly in RESOLVE

Summary of molecular assembly results (NDP-kinase)

NCS copies: 3

Molecule: 1 Chain: 1 Score for molecular location: 0.83

Initial automated structure solution, density modification, NCS-identification, and model-building

Structure	Res. (\AA)	\% of main- chain built	\% of side chains built
Granulocyte stimulating factor (Rozwarski	3.5	50%	0%
et al., 1996) β-catenin (Huber et al., 1997) Gene 5 protein	2.7	81%	62%
NDP Kinase (Pédelacq et al, 2002)	2.6	61%	11%
Hypothetical (P. aerophilum ORF, NCBI accession number AAL64711) 2-Aminoethylphosphonate (AEP) Transaminase (Chen et al., 2000)	2.6	56%	37%
Red Fluorescent Protein (Yarbrough et al, 2001)	2.6	79%	75%
Initiation factor 5A (Peat et al., 1998)	2.5	85%	81%

The PHENIX Project

Lawrence Berkeley Laboratory

Paul Adams, Ralf GrosseKunstleve, Pavel Afonine, Nat Echols, Nigel Moriarty, Jeff Headd, Nicholas Sauter, Peter Zwart

Los Alamos National Laboratory
Tom Terwilliger, Lj-Wei Hung

- Los Alamos

NATIONAL LABORATORY

Duke University
Jane \& David Richardson, Vincent Chen, Chris Williams, Bryan Arendall, Laura Murray

An NIH/NIGMS funded Program Project

