Phenix Tools for Validated Refinement of Atomic Models into maps (low-resolution, Cryo-EM, X-ray or neutron)

Pavel V. Afonine | Youval Dar | Oleg V. Sobolev | Thomas C. Terwilliger | Alexandre Urzhumtsev | Paul D. Adams

Lawrence Berkeley National Lab | Los Alamos National Lab | Université de Lorraine & IGBMC, France | University of California, Berkeley

www.phenix-online.org | PAfonine@lbl.gov

SUMMARY

The *phenix.real_space_refine* program implements both new *real-space refinement* methods and in-depth structure validation integrated into refinement workflow. The program is designed to fit atomic models into various kinds of maps (X-ray, cryo-EM, neutron) of broad range of quality (high- to lowresolution) and produce refined models with no or minimal geometry violations such as rotamer or Ramachandran plot outliers.

MOTIVATIONS

Rapidly increasing demand

3J40

• Cryo-EM structures in PDB by year (March 2015)

112

- Inspired by community members
- User-request-driven development
 - Provided feedback and real-life data
- Adam Frost (UC San Francisco) Gino Cingolani
- Lack of dedicated real space refinement software
 - Often cryo-EM maps are being converted into reciprocal space to make use of current crystallographic refinement programs

Might not be the best approach

Cryo-EM Map

|F_{OBS}|, HL

coefficients

• The cryo-EM map is closest to the experimental data: refinement should be done directly against

CHALLENGES

- Model geometry: from decent to very poor
 - Rotamer outliers, more than:
 - 10% in 32% of models in PDB
 - 20% in 10% of models in PDB
 - Ramachandran plot outliers, more than:
 - 5% in 91% of models in PDB
 - 10% in 34% of models in PDB
 - **RMSD covalent bonds, more than:**
 - 0.05Å in 15% of models in PDB
 - Gold standard 0.01-0.02Å
 - **RMSD covalent angles, more than:**
 - 3° in 20% of models in PDB
 - Gold standard 1.5-2.5Å

REAL-SPACE REFINEMENT IN Phenix: STATE-OF-THE-ART

EXAMPLES OF USING *Phenix* REAL-SPACE REFINEMENT TO REFINE ATOMIC MODELS INTO CRYO-EM MAPS

METRIC	Original	Phenix
Map CC	0.650	0.714
RMSD (bonds/angles)	0.01/1.34	0.01/1.31
Clashscore	100.9	32.84
Rama. outl., %	0.52	0
Rotamer outl., %	27.99	0
C-beta deviations	0	0

METRIC	Original	Phenix	
Map CC	0.596	0.743	
RMSD (bonds/angles)	0.03/2.34	0.00/1.11	
Clashscore	92.37	34.73	
Rama. outl., %	2.03	0.54	
Rotamer outl., %	26.21	0	
C-beta deviations	2	0	
949 residues, refinement time: 15 minutes			

10,716 residues, refinement time: 173 minutes

10 7 B 4 7 1	
Original	Phenix
0.709	0.647
0.04/4.05	0.01/1.23
18.34	18.59
3.66	0
24.64	0
637	0
	Original 0.709 0.04/4.055 18.34 3.66 24.64 637

Phenix

All tools and methods presented here are implemented in *Phenix* and available in most recent nightly build

More information:

www.phenix-online.org

This work was supported by the NIH (Project 1P01 GM063210) and the *Phenix* Industrial Consortium. This work was supported in part by the US Department of Energy under Contract No. DE-AC02-05CH11231. AU thanks the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INSB-05-01 and Instruct, part of the European Strategy Forum on Research Infrastructures (ESFRI).

Acknowledgements