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Solving a structure with SAD phasing

Crystals with Se/Zn/…

Collect anomalous SAD data

Locate  substructure

Phasing (calculate density map)

Density modification (improve map)

Model building



Solving a structure with SAD phasing (Se)

Planning the experiment

Automating the analysis

Improving the map

Building a model



Will I solve my SAD structure?

Planning the experiment

Automating the analysis

Improving the map

Building a model



Will I find the anomalous substructure?

How many sites?

Are sites ordered?

Anomalous atom?

Wavelength?

Accurate data?

How many reflections?



Key steps in SAD structure determination

1. Find the substructure

Anomalous 
signal S

2. Calculate an interpretable map

Anomalous 
correlation CC*ano



Anomalous correlation

Anomalous 
correlation CC*ano

• Correlation of anomalous differences with ideal

• Accuracy of anomalous data

• Accuracy of phasing



Anomalous signal

Anomalous 
signal S

• Peak height in anomalous difference Fourier

• “Information per site” (can we find each site)

• Substructure likely to be found if S > 10



Will I find the anomalous substructure?

How many sites?

Are sites ordered?

Anomalous atom?

Wavelength?

Accurate data?

How many reflections?



Sano =CCano
* ⋅

Nrefl

nsites
⋅
1
f 1/2

Number of 
reflections

Anomalous signal: information about each site
(peak height in anomalous difference Fourier)

Number 
of sites

B-value for 
anomalous 
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Anomalous 
signal S

Will I find sites?

Anomalous 
correlation

Accuracy of the data



Will I solve my SAD structure?

Planning the experiment

Automating the analysis

Improving the map

Building a model



Why automate structure determination?

Makes straightforward cases easier

Speeds up the process

Allows you to try more possibilities

… and difficult cases feasible for experts

Reduces errors



Decision-making in automation 

What does a good electron density map 
look like?

Using expected features of maps to 
make decisions and to improve maps



Decision-making in automation 

Flat 
solvent 
region

Connected 
density

Density 
looks like 
protein

Which map is better?



Histograms of density have positive skew
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Typical histogram of electron density

Low density: Points 
between  atoms and 
in solvent region

Histogram 
skewed
to the right

High density:
Points on top 
of atoms



Histograms of density have positive skew

Poor map

Good map

Good map: 
slight positive
skew

Poor map: 
nearly-perfect
Gaussian

Poor map
(inverse hand)

Better map



Positive skew in good maps



Estimate map quality from skew

Skew depends on 
map quality

Estimate map quality 
from skew

Skew=0.4

CC=0.6-0.7



Density modification

What does a good density map look like?

Use expected features of maps to 
improve map quality

Key feature of this process: improving density 
anywhere can improve it everywhere



Experimental Data

X-ray density modification: “phase improvement”

Noisy Map

Initial phases

Clear Map

Improved phases



1. We know a good 
map when we see it

Basis of density modification

Noisy map Clear map

2. Improvement anywhere 
improves the phases so 

there is improvement 
everywhere



Expected shapes
ConnectivityHistogram 

matching
Density 

matches model

Identify local 
expected density

Density modification

Noisy map Clear map

Find phases 
consistent with 

experiment 
and expected 

density

Density 
everywhere is 

improved

Expected density 
can include…

Flat solvent

NCS



Automated model-building

Examples

§ Shape-based identification of regular secondary structure

§ Extension with short fragments from high-resolution 
structures

§ Probabilistic sequence alignment



Finding regular protein structure



Extending with short fragments from PDB



Assembling best model



Identifying residue type at each position

# G A S V I L M C F Y K R W H E D Q N P T

1 6 5 4 18 18 6 1 1 1 2 6 2 2 1 9 6 1 0 1 4

2 4 11 14 37 5 2 0 2 0 0 2 3 0 0 1 2 0 0 0 6

3 11 23 5 12 5 3 2 0 1 3 7 3 1 0 5 3 2 0 2 2

4 7 9 6 16 8 5 2 0 1 3 8 4 1 0 7 6 2 0 3 4

5 31 7 3 7 4 2 1 0 1 3 5 4 1 0 6 2 2 0 11 1

6 1 3 3 41 14 8 0 0 0 0 2 1 0 0 2 4 0 0 1 9

7 0 0 0 0 0 0 0 0 15 63 1 0 17 1 0 0 0 0 0 0

8 2 3 6 23 10 6 2 1 0 1 4 3 0 0 5 16 1 0 1 6

9 96 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Inserting side chains based on sequence



Experimental data, sequence, 
anomalously-scattering atom, 

wavelength(s)

Automated structure solution

Find heavy-atom sites with direct 
methods or likelihood (HYSS)

Calculate phases (Phaser/Solve)

Improve phases, find NCS, build 
model (phase_and_build)

Decision to be made:

Multiple solutions, different 
derivatives or wavelengths

Alternative hands of space-group 
and substructure

phenix.autosol



Iterative map and model improvement

Experimental data, sequence, phase 
information or starting model

Model-building and refinement

Density modification

• Resolve building
• Secondary-structure only
• Connect chains
• Fit loops
• Build outside model

phenix.autobuild



An NIH/NIGMS funded 
Program Project

The              Project

Liebschner D, et al., Macromolecular structure determination 
using X-rays, neutrons and electrons: recent developments in 
Phenix. 
Acta Cryst. 2019 D75:861–877

Tom Terwilliger, Li-Wei Hung

Matt Baker

Jane Richardson, Vincent 
Chen, Michael Prisant, 
Christopher Williams, 

Randy Read, Airlie McCoy,
Rob Oeffner

Paul Adams, Pavel Afonine, 
Dorothee Liebschner, Nigel 

Moriarty, Billy Poon, 
Oleg Sobolev,

 Christopher Schlicksup

Lawrence Berkeley Laboratory

University of Cambridge

UTHealth

Duke University

Los Alamos National Laboratory
New Mexico Consortium


