Experimental Phasing

Phenix Workshop
October 14, 2023
80th Pittsburgh Diffraction Conference

Tom Terwilliger
Los Alamos National Laboratory/New Mexico Consortium

~

/\ /\‘ \‘

5
-3 JALLE L ”" m UNIVERSITY OF
> Los Alamos —_— * & CAMBRIDGE




olving a structure with SAD phasing

Crystals with Se/Zn/...

Collect anomalous SAD data
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Phasing (calculate density map)



Solving a structure with SAD phasing (Se)

Planning the experiment
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Automating the analysis

zIN 72THS

yIN 80THS

Improving the map

Building a model



Will | solve my SAD structure?

Planning the experimen
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Automating the analysis

zIN 72THS

yIN 80THS

Improving the map

Building a model



Will | find the anomalous substructure?

How many sites?
Are sites ordered?
Anomalous atom?

Wavelength?

Accurate data?

How many reflections?



Key steps in SAD structure determination

1. Find the substructure

Anomalous
signal S

2. Calculate an interpretable map

Anomalous
correlation CC*_,,




Anomalous correlation

Anomalous
correlation CC*_,,

« (Correlation of anomalous differences with ideal
* Accuracy of anomalous data

* Accuracy of phasing



Anomalous signal

Anomalous
signal S

* Peak height in anomalous difference Fourier
« “Information per site” (can we find each site)

« Substructure likely to be found if S > 10



Will | find the anomalous substructure?

How many sites?
Are sites ordered?
Anomalous atom?

Wavelength?

Accurate data?

How many reflections?



Anomalous signal: information about each site
(peak height in anomalous difference Fourier)
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Anomalous reflections
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Will | solve my SAD structure?

Planning the experimen
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Automating the analysis

zIN 72THS

yIN 80THS

Improving the map

Building a model



Why automate structure determination?

Makes straightforward cases easier

... and difficult cases feasible for experts

Speeds up the process

Reduces errors

Allows you to try more possibilities




Decision-making in automation

What does a good electron density map
look like™?

Using expected features of maps to
make decisions and to improve maps



Decision-making in automation

Which map is better?

Density
looks like
protein

Flat
solvent
region

Connected
density




Histograms of density have positive skew

Typical histogram of electron density
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Histograms of density have positive skew
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Positive skew in good maps

Skew of electron density
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Estimate map quality from skew

Skew depends on

Skew of electron density
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Density modification

What does a good density map look like”?

Use expected features of maps to
Improve map quality

Key feature of this process: improving density
anywhere can improve it everywhere



improvement”

“phase

X-ray density modification

Experimental Data

Improved phases

lal phases
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Basis of density modification

Clear map

2. Improvement anywhere
improves the phases so
there is improvement
everywhere

1. We know a good
map when we see it



Density modification

|dentify local
expected density

Find phases
consistent with
experiment
and expected
density

: Clear map
Density

everywhere is
improved

Flat solvent Sy
matches model




Automated model-building

Examples

» Shape-based identification of regular secondary structure

= Extension with short fragments from high-resolution
structures

* Probabilistic sequence alignment



Finding regular protein structure




Extending with short fragments from PDB




Assembling best model




Identifying residue type at each position

G|A|S | V |1 F | Y w D P
6 | 5 4 18 | 18 1 2 2 6 1
4 |11 114 |1 37 | 5 0 |0 0 2 0
11123 5 12 ) 1 3 1 3 2
719 6 16 | 8 1 3 1 6 3
31| 7 3 7 4 1 3 1 2 11
1 3 3 |41 | 14 0 |0 0 4 1
0] 0 0 0 0 15 | 63 17 0 0
2 | 3 6 23 | 10 0 1 0 16 1
96 | 0 | O 0 0 0|0 0 0 0




Inserting side chains based on sequence




Automated structure solution

phenix.autosol

Experimental data, sequence,
anomalously-scattering atom,
wavelength(s)

Find heavy-atom sites with direct
methods or likelihood (HYSS)

Calculate phases (Phaser/Solve)

Improve phases, find NCS, build
model (phase_and_build)

Decision to be made:
Multiple solutions, different

derivatives or wavelengths

Alternative hands of space-group
and substructure



Iterative map and model improvement

phenix.autobuild

Experimental data, sequence, phase
information or starting model

Model-building and refinement Resolve building
Secondary-structure only
Connect chains

Fit loops

Build outside model

Density modification
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