

CALIF

Macromolecular Structure Determination using crystallographic and cryo-EM data

What is Phenix?

- Package for automated structure solution (crystallography, cryo-EM)
- Modern programming concepts and new algorithm development
- Designed to be used by **both novices and experienced users**
- Long-term development and **support**
- Why is it called *Phenix*?

Python Hierarchical ENvironment for Integrated Xtallography

Liebschner D, *et al.*, Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in *Phenix*. Acta Cryst. 2019 **D75**:861–877

Phenix - a Structural Biology Hub

We have nucleated the development of new computational methods for structural biology

Key Features

• Python

- Easy scripting of repetitive tasks
- Enables rapid prototyping and development

• Advanced algorithms

- Experimental phasing
- Molecular replacement
- Automated model building and rebuilding
- Structure refinement and validation
- Ligand coordinate and restraint generation
- Rapid development and bug fixing

Tools for Crystallography

Tools for Cryo-EM

Acta Cryst. 2019 D75:861–877 (Phenix)

Features

Phenix GUI

Central GUI for job control and to launch new jobs

			PHENI	X home	
🙆 📈 (2	<u></u>	🛫 🚀 💈	K	sta 🗘 🕺
Quit Preferences H	lelp Citations Relo	oad last job	Coot PyMOL Ki	NG Oth	ner tools Ask for help
Actions Job history				1	
Projects				Favorites	
Show group: All g	roups	Manage.		AlphaFold	(predicted models)
Select 🙆 De	ete New project	Settings		Crystals:	Data analysis and manipulation
	Last madified	# of icho) frag	-	Validation and map-based comparisons
✓ test	Sep 14 2021 02:2	529 0	.0971		Experimental phasing
					Molecular replacement
					Maps (create, manipulate, compare)
					Enhanced maps (Polder, FEM, density-modified)
					Model building
					Refinement
					Ligands
				Cryo-EM:	Map analysis, symmetry, manipulation
					Validation and map-based comparisons
					Map improvement
					Docking, model building and rebuilding
					Refinement
				Models:	Superpose, search, compare, analyze symmetry
					Modification, minimization and dynamics
				PDB Depos	sition
				Program s	earch
Current directory:	/Users/dcliebschner/De	esktop/Projects/	test	Br	rowse
PHENIX version dev-sv	n-000				Project: test

Coot/PyMOL/ChimeraX integration

• Most results can be opened directly in graphics apps

• Any PDB file listed in GUI can also be opened

- AutoSol, AutoBuild, and phenix.refine will update Coot continuously while running
- Coot must have Python support (default on Mac)
- Specific paths to executables usually required on Linux Preferences \rightarrow Graphics \rightarrow Full path to Coot [...PyMOL]

Command Line Tools

Run on the terminal

Run in a python script

Phenix Availability

<u>1.17.1-</u> 3660	2019- 10-16	successful	ci, intel-windows-x86_64, intel-linux-2.6-x86_64-centos6, mac-intel-osx-x86_64	Official 1.17.1 release; docs; changelog
<u>dev-</u> 3751	2020- 01-15	successful	ci, intel-windows-x86_64, intel-linux-2.6-x86_64-centos6, mac-intel-osx-x86_64	docs; changelog
<u>dev-</u> <u>3753</u>	2020- 01-17	successful	ci, intel-linux-2.6-x86_64-centos6, mac-intel-osx-x86_64, intel-windows-x86_64	docs; changelog
3758	01-22	successful	<u>ci, intel-linux-2.6-x86_64-centos6, mac-intel-osx-x86_64, intel-windows-x86_64</u>	docs; changelog

Video Tutorials

Dorothee Liebschner, Nigel Moriarty, Tom Terwilliger, Christopher Schlicksup, Vincent Chen

What's new?

Accurate predicted models

EVQLVESGGGLVQPGGS	LRLSCAASGFN	N I YSSS I HWVRQA	PGKGLEWVAYI
		FM	Q
	.к	YL	.A
			V
•••••••••••••••••	Δ		•••••
•••••••••••••••	• • • 1 1 • • • • • • • •	T 77 F	
۰ • • • • • • • • • • • • • • • • • • •	•••••	. V . E .	· · · · · · · · · · · · · · · · · · ·
••••••••A•••••			· · · · · Q · · · · ·

Sequence Multiple sequence alignment

3D prediction

New tools for predicted models in Phenix

AlphaFold model prediction

(Phenix server, no need to have AF installed locally)

Process predicted model

Predict and Build

(Iterative AlphaFold prediction, docking, and rebuilding)

Fully automatic!

Likelihood-based EM docking

- Use likelihood scores to dock a model into a map
- Works at low resolution (8.5 Å)

Read RJ, Millán C, McCoy AJ, Terwilliger TC. Likelihood-based signal and noise analysis for docking of models into cryo-EM maps. Acta Crystallogr D Struct Biol. 2023 Apr 1;79(Pt 4):271–80.

Millán C, McCoy AJ, Terwilliger TC, Read RJ. Likelihood-based docking of models into cryo-EM maps. Acta Crystallogr D Struct Biol. 2023 Apr 1;79(Pt 4):281–9.

Barbed wire analysis

- Automatically select the most promising regions of an AlphaFold prediction
- Annotate a prediction to help you make informed decisions about it.

Sunday, August 27th 5:55 pm, Christopher Williams, Identification and Valdiation of low-pLDDT regions in AF2 predictions (A011)

Two Ramachandran distributions

Model A

Favored	97.8 %
Allowed	1.95 %
Outliers	0.25 %

Model B

Favored	96.2 %
Allowed	3.8 %
Outliers	0.0 %

Global Ramachandran Score

Structure

Resource

A Global Ramachandran Score Identifies Protein Structures with Unlikely Stereochemistry

Graphical Abstract

The Rama-Z metric should be included in Table 1 to validate the Ramachandran distribution

Authors

Oleg V. Sobolev, Pavel V. Afonine, Nigel W. Moriarty, Maarten L. Hekkelman, Robbie P. Joosten, Anastassis Perrakis, Paul D. Adams

Correspondence

osobolev@lbl.gov (O.V.S.), r.joosten@nki.nl (R.P.J.)

In Brief

Counting the number of Ramachandran outliers is not sufficient for protein backbone validation. Sobolev et al. revisited the underutilized Ramachandran *Z* score. The authors describe its reimplementation in Phenix and PDB-REDO and showcase its utility. They advocate including it in the validation reports provided by the Protein Data Bank.

Structure, **28**. 1249-1258.

Global Ramachandran Score

Structure validation with H-bond parameters

Grey: reference distribution Red: 6mdo

Validation tool based on H-bond parameter distribution of highresolution PDB models.

Afonine et al. (2023). Acta Cryst. D79, 684–693

Structure validation with H-bond parameters

A model not matching the tabulated distributions is not necessarily wrong → Inspect model to find explanation

Grey: reference distribution Red: 5j1f

Afonine et al. (2023). Acta Cryst. D79, 684–693

QMR – quantum mechanical restraints

- Ligands need restraints (description of chemical structure) for refinement.
- Restraint generators often ignore chemical variability & specific binding interactions.

BER in 3vw2

QMR approach:

- Minimize the ligand geometry in the binding pocket.
- Use minimized ligand geometry as targets for restraints.

(forget about what happened with the residues)

Liebschner D., Moriarty, N.W., Poon, B. K. & Adams, P. D., In situ ligand restraints from quantum-mechanical methods. *Acta Cryst. D.* **79**, 100–110, (2023)

Run Phenix tools through ChimeraX

Local EM fitting (EM placement)

Automated water building (phenix.douse)

"Demo"

Incorporate predictions into the "conventional" structure determination workflow.

Millán C. et al.. Assessing the utility of CASP14 models for molecular replacement. Proteins. 2021 Dec;89(12):1752–69.

Incorporate predictions into the "conventional" structure determination workflow.

Example: Diffraction data 7e9L (bovine protein of POMGNT2)

>POMGNT2_BOVINE soluble expression construct GAPPAPALRIDYPKALQIL TEGGTHMVCTGRTHTDRLCRFKWLCYSSEAEEFIFFHGNASVMLPSLGSRRFQPALLDLS TVEDHNTQYFNFVELPAAALRFMPKPVFVPDVALIANRFNPDNLMHVFHDDLLPLFYTLR QFPGLAREARLFFMEGWGEGAHFDLYKLLSPKQPLLRAQLKALGRLLCFSHAFVGLSKVT TWYQYGFVQPQGPKANILVSGNEIRQFAHFLMEKLNVSQAGGPLGEEYILVFSRTQNRLI LNEAELLLALAQEFQMKTVTVSLEDHAFADVVRLVSNASMLVSMHGAQLVTALFLPRGAA VVELFPYAVNPDHYTPYKTLATLPGMDLQYIAWQNTMPENTVTHPERPWDQGGIAHLDRA EQARILQSREVPRHLCCRNPEWLFRIYQDTKVDIPSLIQTIRRVVKGHPGPRKQKWTVSL YPGKVREARCQASVQGASEARLSVSWQIPWNLKYLKVREVKYEVWLQEQGENTYVPYMLA LQNHTFTENIKPFTTYLVWIRCIFNKTLLGPFADVLVCST

Sequence (human protein)

Predicting a model in Phenix

	e e AlphaF	old model pred	diction (Proj	ect: presenta	tion)	Preferences	? Help	Run	Abort	Save	C Help	Phenix Server
	Input/Output Prediction	on Settings										4 Þ
	PredictModel: Pre Job title :	dict protein chai	ns with Alpha	aFold								
Sequer	ice.(ten	nplate	, mu	ltiple	seque	ence	ali	gnn	nei	nt)		
	Required: Sequence	file Ontional: T	Templatos MS	A	Data tura							
	A /Users/dcliebschi	ner/Desktop/Proj	ects/15_conf	Sequence	Sequence file							- 11
												- 11
												- 11
	Add file Rem	nove file Modify	y file data type	<u></u>								
	Composition (load a see	quence file and/or p	aste and edit se	equencesthe cor	nposition shown be	elow is what will	be used)					
	Note: if you supply	more than one s	equence they	will be run sep	parately, not as a	a complex						
	Unique sequences a	nd copies (1)										
	Sequence : EIS	EVQLVESGGGLVQP	GGSLRLSCAASG	GFNIYSSSIHWVRÇ	APGKGLEWVAYIY	SYSGYTSYADS	/KGRFTIS	ADTSKNTA	Co	opies :	1	
	Ad	ld another D	elete last									
	Project Directory:	/Users/dcliebs	chner/Deskto	op/Projects/1	5_conferences-	presentatio	ns/2023_	03b_WCSE	W/pres	sentatio	n Q	
	Idle						Pro	oject: prese	ntation			

Do I need to install AlphaFold?

Phenix Server for running AlphaFold

put/Output Predictio	on Settings						1
Prediction strategy							
Number of models :	5	✓ Include templates from PDB	🗸 Use MSA	Skip al	MSA after	first cycle	
Prediction Server	PhenixServer	Allow precalculated results	✓ Allow precalcul	ated MSA	🗸 Stop if	internet not available	
dditional prediction inp	outs (Note: this GUI is	only for prediction, not docking or model-bu	uilding)				
Predict and Build	Input Files	Prediction Control A	All parameters				

No need for a local AlphaFold installation

Phenix prediction server status
SERVER STATUS: UP
RUNNING JOBS: 2 WAITING JOBS: 0
WAIT TIME: 0 min
This server is used in PredictModel and PredictAndBuild. Colab can be used as an alternative
 ✓ OK

sequence

Get a prediction

TEGGTHMVCTGRTHTDRLCRFKWLCYSSEAEEFIFFHGNASVMLPSLGSRRFQPALLDLS TVEDHNTQYFNFVELPAAALRFMPKPVFVPDVALIANRFNPDNLMHVFHDDLLPLFYTLR QFPGLAREARLFFMEGWGEGAHFDLYKLLSPKQPLLRAQLKALGRLLCFSHAFVGLSKVT TWYQYGFVQPQGPKANILVSGNEIRQFAHFLMEKLNVSQAGGPLGEEYILVFSRTQNRLI LNEAELLLALAQEFQMKTVTVSLEDHAFADVVRLVSNASMLVSMHGAQLVTALFLPRGAA VVELFPYAVNPDHYTPYKTLATLPGMDLQYIAWQNTMPENTVTHPERPWDQGGIAHLDRA EQARILQSREVPRHLCCRNPEWLFRIYQDTKVDIPSLIQTIRRVVKGHPGPRKQKWTVSL YPGKVREARCQASVQGASEARLSVSWQIPWNLKYLKVREVKYEVWLQEQGENTYVPYMLA LQNHTFTENIKPFTTYLVWIRCIFNKTLLGPFADVLVCST

- Remove low confidence parts.
- Break model into domains.

Process prediction

- Remove low confidence parts.
- Break model into domains.

- Remove low confidence parts.
- Break model into domains.

Do MR search with 2 components

Molecular replacement

Phaser has found 1 MR solution(s). **Top LLG:** 4528.201 **Top TFZ:** 34.6 Spacegroup: P 21 21 21 MR solution 7e9l

Molecular replacement

Automatically rebuild fragments

Fix deviating part automatically with phenix.fit_loops.

Automatically rebuild fragments

New approach: Iterate prediction and model building

Improving prediction (cryo-EM)

Improving prediction

What happens if we use the rebuilt model as template for AlphaFold?

Improving prediction

• New prediction can be even better than the template

Terwilliger TC et al. Improved AlphaFold modeling with implicit experimental information. Nat Methods. 2022 Nov;19(11):1376–82.

Iterate with Predict and Build

•••	Predict an	d Build (Proj	ect: 7brm)		Preferences	? Help	Run	Abort	Save	C Help	Phenix Server
Input/Output	Prediction a	nd Building Sett	ings PredictAndBu	uildCryoEM_17							4 ▷
Prediction st	trategy										
Number of	f models :	1	Include to	emplates from PDB	🗸 Use MSA	🗌 S	kip all M	SA afte	r first cyc	le	
Rebuilding st	trate					Num	ber	of			
Cycles :	10	Numbe	er of processors :	4	😑 Refine or (no	orebuilding s		on/	′bui	lding	
Pause	after dockin	g and renneme	ent to check result	ts				,		0	
🗸 Update	e unique sequ	ences			i	terat	tion	IS			
Prediction S											
Prediction	Server : Ph	enixServer	Allow p	recalculated results	🗸 Allow precal	culated MS/	A 🔽	Stop i	f internet	not available	2
Carry on pre	vious run (Rest	ore a completed	run from Job history	to fill this in automatic	ally. You can also selec	t the CarryO	n subdire	ctory in	a Predict_	and_Build_xx	directory)
Carry-on d	directory :				Br	owse	٩	Con	tinue this	s previous ru	n
Advanced in	puts										
Predict a	nd Build	Input Files	Box info	Processing	Search	Build	ling				
Predictio	n	Control	All parameters	s							

Talks of Phenix team members at the IUCr 2023

Wednesday, August 23rd

- 9:00 am, Tom Terwilliger, AlphaFold changes everything (and nothing) (Keynote 1)
- 1:30 pm, Oleg Sobolev, Global Ramachandran Score (A020)
- 2:40 pm, Randy Read, Likelihood-based docking (A020)

Sunday, August 27th

• 5:55 pm, Christopher Williams, *Identification and Valdiation of lowpLDDT regions in AF2 predictions* (A011)

Monday, August 28th

- 9:00 am, Airlie McCoy, Trekkin' through reciprocal space with Phaser (Keynote 31)
- 2:20 pm, Dorothee Liebschner, Using the PDB and EMDB for testing new algorithms (A023)