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Accuracy & Precision

From http://extensionengine.com, by Furqan Nazeeri



Errors

• Random errors (noise)
• Typically normally distributed

• Can be reduced by increasing the number of observations

• Affect the precision

• Systematic errors (bias)
• Could arise from a poor experimental design or lack of 

understanding of the system being studied

• Are reproducibly biased

• Affect the accuracy

• Gross errors
• Incorrect assumptions have been made or serious mistakes 

undetected

• May be detectable as outliers compared to prior knowledge



Mistakes Still Happen

• Mistakes still can happen

Dawson & Locher, Nature 
443, 180-185, 2006



Register Errors
• Register errors typically start in loop regions (over 

or under building)

• Fixing these errors can be challenging (loop 
regions often have poor density) - estimated that 
1% of structures in PDB have register errors

• Real space analysis can help

• Packing analysis (WHATCHECK, MolProbity)

1CHR, 3.0 (light) versus 2CHR (dark)
Image from Gerard Kleywegt, European Bioinformatics Institute

1ZEN
(σA-weighted map)

Corrected
(OMIT build)

Comparison
(Difference map)

Terwilliger et al., Acta Cryst 
D64, 515-524, 2008



Other Kinds of Errors
• Systematic error in magnification

• Incorrect sequence (less common these days)

• Incorrectly placed waters or too many waters

• Waters fit instead of ions and side chains

• Small molecule geometry (where did you get the restraints from?)

1HBP, 1.9Å, 
1993

Semi-empirical 
calculated structure



Geometric Measures
• Some of the best measures for validation are from information 

not used in the model optimization (e.g. Free R-value)

• For geometry (of proteins) one of the best measures is the 
Ramachandran distribution - the main chain torsion angles
• The handedness of amino acids, and the steric clashes that 

occur, given the side chain attachment to the mainchain, results 
in limits on the distribution of mainchain torsion angles

G. N. Ramachandran



The Ramachandran PlotAll minus 
Pro & Gly

Proline

Glycine

Images from Jane and David 
Richardson, Duke University

Pre-proline



The Ramachandran Plot
• A protein structure should in 

general conform to prior 
expectations (based on theory and 
prior observation)

• Most (98%+) residues should have a 
mainchain conformation consistent 
with the Ramachandran distribution

• A small percentage (0.2%) of residue 
may show Ramachandran outliers 
(note they are not necessarily 
errors)

• Outliers can be seen in strained 
regions of the structure (e.g. in 
the active site)

• Any outliers need to be confirmed 
by detailed analysis 



Rotamers
• There are steric clashes between atoms within amino acid side 

chains

• These clashes lead to preferred conformations, called rotamers

• Different rotamers are generated by rotation of side chain 
torsion angles (χ1, χ2 etc)

Image from Jane and David 
Richardson, Duke University



Rotamers

• As with the Ramachandran 
distribution, protein side 
chains are expected to 
conform to known rotamer 
distributions

• More variability because of 
interactions with other 
sidechains, mainchain or 
ligands

• Outliers may be meaningful, 
but need to be verified

• Sidechains on the protein 
surface will often have little 
density (disorder)



Hydrogens
• Macromolecules contain hydrogens

• Approximately half of the atoms in a 
structure

• Hydrogens make the majority of 
contacts in a structure

• Typically ignored because they aren’t 
typically seen experimentally
• But, the hydrogens are there!

• The Richardson group (Duke 
University) have pioneered the use of 
hydrogens in calculating packing (and 
clashes) inside macromolecules

• The quality of packing and the nature 
of clashes can be used to validate and 
correct structures

Images from Jane and David 
Richardson, Duke University



All Atom Contacts

Image from Jane and David Richardson, Duke University



MolProbity
• MolProbity has been developed to validate structures (purely on 

coordinates)

• Performs all atom contacts, Ramachandran, rotamer and other 
geometry analyses

http://molprobity.biochem.duke.edu/

http://molprobity.biochem.duke.edu


MolProbity
• Generates detailed problem list
• Problems can be fixed more easily by using validation lists 

viewed visually (e.g. Coot from Phenix)



Results - Rebuilding and Validation



Validation
• Outlier lists recenter Coot view; Probe dots automatically loaded



Using Validation Tools Improves Models

Images from Jane and David Richardson, Duke University



Cis-Peptides



Too Many Cis-Peptides

• Cis non-Prolines are chosen much more often than chance, because they 
are more compact than trans and fit better into the shrunken & rather 
featureless low-resolution density (esp. for loops).
• Automated building with a no-cis fragment library (Tom Terwilliger)



Omegalyze

Christopher Williams, 
Duke University



Validation Using C𝝰 Atoms

Christopher Williams, 
Duke University



Identifying Distorted Secondary Structure

Christopher Williams, 
Duke University



Assessing Secondary Structure Probability

Christopher Williams, 
Duke University



Comprehensive Validation



Map Resolution and Map/Model Fit

Afonine et al: New tools for the analysis and validation of cryo-EM 
maps and atomic models. Acta Cryst. 2018, D74:814-840.



Resolution Determination



Cross Validation with Half Maps

• Perturb model (random shift of coordinates)

• Re-refine against 1 half map

• Calculate FSC of model against 2nd half map

• FSC curve shouldn’t show signal beyond the half map 
resolution



Model/Map Validation

Benjamin Barad, Yifan Cheng, Jaime Fraser
University of California San Francisco

Ray Yu-Ruei Wang, Frank DiMaio
University of Washington 

Nat Echols
Lawrence Berkeley National Laboratory



Validation and Cryo-EM

• Do the map make sense?

• Gold Standard FSC of half maps

• Does the model make sense?

• MolProbity

• Does the model fit the map?

• Overall and local density correlation

• What about the detailed local fit?



Look at the Density Around Sidechains

Visualize primary 
conformation

Alternative 
conformations

Alternative conformations+Hydrogens+Noise

Lang PT, et al. Automated electron-density sampling reveals widespread 
conformational polymorphism in proteins. Protein Science. 2010.

Ringer

Ben Barad, Jaime Fraser, UCSF



Look at the Density Around Sidechains

Barad BA, et al. EMRinger: Side-chain-directed model and map 
validation for 3D Electron Cryomicroscopy. Nature Methods. 2015

Favored Favored Favored
EMRinger

Ben Barad, Jaime Fraser, UCSF



EMRinger reports on backbone placement

Ben Barad, Jaime Fraser, UCSF



EMRinger Score to Validate Model vs Data
• Quantify how well the model backbone puts side chains in 

places where there are density peaks consistent with 
rotameric conformations 

• Available in GUI 
and command line

• phenix.emringer 
model.pdb 
map.ccp4

http://emringer.com

R2=0.547

Side chain information 
= random (on average)

Ben Barad, Jaime Fraser, UCSF

http://emringer.com


Ensembles

• At lower resolution ensemble models are probably more 
appropriate

• Can be used to help assess map variability (Herzik, Fraser, 
Lander. Structure. 2019)



Deposition Issues

• Successful re-analysis of cryo-EM data 
relies on accurate data/model deposition

• Current practice has led to significant 
issues:
• Models misplaced wrt maps

• Inconsistent map deposition (sharpened, 
masked, filtered, wrong map)

• Absence of half-maps

• Very variable assessments of resolution

• Optimistic ligand placement (probably 
unintentional)

Afonine et al: New tools for the analysis and 
validation of cryo-EM maps and atomic models. 
Acta Cryst. 2018, D74:814-840.



Conclusions

• Many of the validation metrics developed to assess 
models can be readily applied to cryo-EM structures

• Many of the pitfalls of low resolution from other fields 
apply to cryo-EM

• Care needs to be taken to ensure that validation 
metrics can be used when restraints are applied in 
refinement

• Additional validation metrics for the model w.r.t. the 
data are needed

• We do not have cross-validation metrics for the 
model/data
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