Refinement (Cryo-EM)

Pavel Afonine

Lawrence Berkeley National Lab, California, USA

July 29, 2022 ACA Portland, Oregon

Refinement

Crystallography

phenix.refine Available since 2005

Atomic model refinement: *phenix.real_space_refine*

Atomic model refinement: crystallography vs cryo-EM

Crystallographic refinement

- Improving model improves map
 - (2mFo-DFc, Model phase), (mFo-DFc, Model phase)
 - Better model leads to better map
 - Better map leads to more model built
 - Improving model in one place lets build more model elsewhere in the unit cell
 - Refine all model parameters (XYZ, B) from start to end of structure solution
 - Build solvent (ordered water) early
- Experimental data never changed
- Data / restraints weight is global and time expensive to find best value
- Whole model needs to be refined

Cryo-EM refinement

- Changing model does not change map
 - Build solvent (water) last
 - Get as complete and accurate model as possible before refining B factors and occupancies
- Experimental data changes a lot during the process (filtering, boxing, using maps with implied symmetry or not, etc.)
 - What map to use in refinement?
 - Refined B factors depend on map used
- Data / restraints weight can be local and is always optimal
- Boxed parts of the model can be refined

Refinement protocol

NCS (molecular symmetry)

Source: Internet

- **Constraints**: molecules 1, 2 and 3 are required to be identical
- **Restraints**: molecules 1, 2 and 3 are required to be similar but not necessarily identical

Real-space refinement – B-factors (new)

- Much faster than in previous versions
- Isotropic group or individual
- Symmetry-aware
 - Strict symmetry: B-factors are identical across symmetry copies
- Can use multiprocessing
- Data / restraints weight is always optimal
 - Ensures best model-to-map fit and physically meaningful B-factors
- Refine B-factors at the very last step
 - Because refined model does not feed back to the map
- Refined B-factor values depend on the map used (original vs sharpened or else manipulated)

Real-space refinement – occupancy (new)

- Symmetry-aware
 - Strict symmetry: B-factors are identical across symmetry copies
- Can use multiprocessing
- Rules are similar to *phenix.refine*:
 - Look for (phenix-online.org):

13 typical occupancy refinement scenarios and available options in phenix.refine

- Refine occupancies at the very last step
 - Because refined model does not feed back to the map

Automated re-refinement of deposited cryo-EM models

CERES - the Cryo-EM re-refinement system

Electron cryomicroscopy (cryo-EM) has advanced quickly in recent years, which has led to an increased number of atomic structures. Several tools for the analysis and validation of cryo-EM data and models have been developed within the Phenix software package, such as the refinement program

phenix.real_space_refine. To understand the quality of deposited cryo-EM structures and how they might be improved, we automatically re-refined models deposited in the Protein Data Bank that have map resolutions better than 5Å. The results are available on this web page.

🕤 cryo-EM Re-Refine × + 🖞 🌣 📑 👘 cci.lbl.gov/ceres/table_all/?page=1 Phenix CERES Home About Glossary of terms Figures PDB/EMDB Contact Table showing results for November 2021 Rerefinement month 🔻 Table options 🔻 The table shows a selection of parameters. Activate more columns using the drop-down menus below peach highlight: initial model; blue highlight: re-refined model Resolution -Map vs model -Geometry -Ramachandran Composition -Other -Clashsco CChov CCm Clashsc RMSD CCbox CCm Date 2021 23517 7SDE 3.2 0.004 0.92 25.84 0.005 0.79 10.50 0.0 0.61 0.75 0.74 0.77 0.79 726 loafile 09-29 2021 0.009 1.32 7VH1 31983 4.2 5.93 0.2 0.79 0.75 0.003 0.74 11.51 0.0 3.34 0.79 0.76 1661 logfile 09-20 2021-✓ 7VH3 31985 3.6 0.005 1.09 7.95 0.68 0.69 0.011 1.13 13.24 0.1 1.67 0.70 0.73 1612 logfile 0.4 09-20 2021-✓ 7VGQ 31975 4.0 0.009 1.27 7.11 0.2 0.71 0.75 0.004 0.75 9.16 0.1 0.72 0.70 0.76 1661 logfile 09-18 2021 7PQE 13591 3.7 0.006 0.68 12.28 1365 logfile 09-17 2021-✓ 7VG2 31963 3.1 0.016 1.43 17.56 0.2 0.72 0.79 0.004 0.67 14.49 0.0 1.24 0.72 0.79 845 logfile 09-14 2021-X 7PPo 13583 2.91 1382 logfile 09-14 2021 ✓ 7VG3 31964 3.73 0.006 1.15 7.51 0.004 0.74 9.83 1.09 0.79 860 loafile 09-14 2021

- <u>Developers</u>: helps track the impact of new methods and tools
- <u>Users</u>: lets to see how their models can benefit from improved methods and tools

Automated water building: *phenix.douse*

Difference maps SHORT COMMUNICATIONS

difference map for cryo-EM 5L4g, EMDB 4002

SA

Figure 1: ATP in PDB model 5L4g superimposed

Figure 2: ATP in PDB model 5L4g in a difference

8

User support

• Feedback, questions, help

Mailing list (all, developers and users): phenixbb@phenix-online.orgBug reports (developers only):bugs@phenix-online.orgAsk for help (developers only):help@phenix-online.org

• Reporting a bug or asking for help:

- We can't help you if you don't help us to understand your problem
- Make sure the problem still exist using the latest *Phenix* version
- Send us all inputs (files, non-default parameters) and tell us steps that lead to the problem
- All data sent to us kept confidentially

Project

Lawrence Berkeley Laboratory

Paul Adams, Pavel Afonine, Dorothee Liebschner, Nigel Moriarty, Billy Poon, Christopher Schlicksup, Oleg Sobolev

Phenix

The

University of Cambridge

Randy Read, Airlie McCoy, Tristan Croll, Claudia Millán Nebot, Rob Oeffner

Los Alamos National Laboratory New Mexico Consortium

Jane & David Richardson, Christopher Williams, Vincent Chen

Liebschner D, *et al.*, Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in *Phenix*. Acta Cryst. 2019 **D75**:861–877